欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.如圖,已知B、C、E三點(diǎn)在同一條直線上,△ABC與△DCE都是等邊三角形,其中線段BD交AC于點(diǎn)G,線段AE交CD于點(diǎn)F,求證:
(1)△ACE≌△BCD;
(2)$\frac{AG}{GC}$=$\frac{AF}{FE}$.

分析 (1)由三角形ABC與三角形CDE都為等邊三角形,利用等邊三角形的性質(zhì)得到兩對(duì)邊相等,一對(duì)角相等,利用等式的性質(zhì)得到夾角相等,利用SAS即可得證;
(2)由(1)得出的三角形全等得到對(duì)應(yīng)角相等,再由一對(duì)角相等,且夾邊相等,利用ASA得到三角形GCD與三角形FCE全等,利用全等三角形對(duì)應(yīng)邊相等得到CG=CF,進(jìn)而確定出三角形CFG為等邊三角形,確定出一對(duì)內(nèi)錯(cuò)角相等,進(jìn)而得到GF與CE平行,利用平行線等分線段成比例即可得證.

解答 證明:(1)∵△ABC與△CDE都為等邊三角形,
∴AC=BC,CE=CD,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,
在△ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
(2)∵△ACE≌△BCD,
∴∠BDC=∠AEC,
在△GCD和△FCE中,
$\left\{\begin{array}{l}{∠GCD=∠FCE=60°}\\{CD=CE}\\{∠BDC=∠AEC}\end{array}\right.$,
∴△GCD≌△FCE(ASA),
∴CG=CF,
∴△CFG為等邊三角形,
∴∠CGF=∠ACB=60°,
∴GF∥CE,
∴$\frac{AG}{GC}$=$\frac{AF}{FE}$.

點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),以及等邊三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知DE∥BC,AB=AC,∠1=125°,則∠C的度數(shù)是( 。
A.55°B.45°C.35°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.“綜合與實(shí)踐”學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個(gè)單位長度.
(1)用記號(hào)(a,b,c)(a≤b≤c)表示一個(gè)滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個(gè)單位長度的一個(gè)三角形.請列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.化簡下列各式:
(1)(x-3y)(x+3y)-(2x-y)2-y(3x-10y);
(2)$\frac{{a}^{2}+3a}{{a}^{2}+2a+1}$÷($\frac{8}{a+1}$-a+1)+$\frac{1}{a-3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.已知關(guān)于x的不等式組$\left\{\begin{array}{l}{2x+m>0}\\{x-1<6}\end{array}\right.$有五個(gè)整數(shù)解,m的取值范圍是( 。
A.-4≤m<-2B.-4<m<-2C.-4<m≤-2D.-4≤m≤-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,反比例函數(shù)y=$\frac{k}{x}$的圖象經(jīng)過點(diǎn)A(-1,4),直線y=-x+b(b≠0)與雙曲線y=$\frac{k}{x}$在第二、四象限分別相交于P,Q兩點(diǎn),與x軸、y軸分別相交于C,D兩點(diǎn).
(1)求k的值;
(2)當(dāng)b=-2時(shí),求△OCD的面積;
(3)連接OQ,是否存在實(shí)數(shù)b,使得S△ODQ=S△OCD?若存在,請求出b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A10B10C10D10E10F10的邊長為( 。
A.$\frac{243}{{2}^{9}}$B.$\frac{81\sqrt{3}}{{2}^{9}}$C.$\frac{81}{{2}^{9}}$D.$\frac{81\sqrt{3}}{{2}^{8}}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)幾何體的三視圖如圖所示,則該幾何體的形狀可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.一個(gè)不透明的盒子中裝有3個(gè)紅球,2個(gè)黃球和1個(gè)綠球,這些球除了顏色外無其他差別,從中隨機(jī)摸出一個(gè)小球,恰好是黃球的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案