| A. | 4 | B. | 2$\sqrt{5}$ | C. | 8-2$\sqrt{3}$ | D. | 2$\sqrt{13}$ |
分析 由P在直線y=-x+8上,設(shè)P(m,8-m),連接OQ,OP,由PQ為圓O的切線,得到PQ⊥OQ,在直角三角形OPQ中,利勾股定理列出關(guān)系式,配方后利用二次函數(shù)的性質(zhì)即可求出PQ的最小值.
解答
解:∵P在直線y=-x+8上,
∴設(shè)P坐標(biāo)為(m,8-m),
連接OQ,OP,由PQ為圓O的切線,得到PQ⊥OQ,
在Rt△OPQ中,根據(jù)勾股定理得:OP2=PQ2+OQ2,
∴PQ2=m2+(8-m)2-12=2m2-16m+52=2(m-4)2+20,
則當(dāng)m=4時(shí),切線長PQ的最小值為2$\sqrt{5}$.
故選:B.
點(diǎn)評(píng) 此題考查了一次函數(shù)綜合題,涉及的知識(shí)有:切線的性質(zhì),勾股定理,配方法的應(yīng)用,以及二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)的性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (a+b)(a-b) | B. | (x+2y)(x-2y) | C. | (-a-3)(-a+3) | D. | (2a-b)(-2a+b) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 4 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠1+∠2+∠3=135° | B. | △ABD∽△EBA | C. | △ACD∽△ECA | D. | 以上結(jié)論都不對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 3 | C. | -2 | D. | 8 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com