分析 (1)首先證明△CBF≌△CDF,從而得到∠FBC=∠FDC,然后由平行線的性質(zhì)可知∠FDC=∠AED,從而可證得∠AED=∠FBC;
(2)連接BD,由菱形的性質(zhì)可知;OB=OD,然后再證明OG=OE,從而可證得四邊形DEBG是平行四邊形.
解答 證明:(1)∵四邊形ABCD是菱形,
∴∠DCF=∠BCF,DC=BC.
在△DCF和△BCF中,
$\left\{\begin{array}{l}{DC=BC}\\{∠DCF=∠BCF}\\{FC=FC}\end{array}\right.$,
∴△DCF≌△BCF,
∴∠FBC=∠FDC.
∵DC∥AB,
∴∠FDC=∠AED.
∴∠AED=∠FBC.
(2)如圖,連接BD.![]()
∵四邊形ABCD是菱形,O是AC的中點(diǎn),
∴OD=OB.
∵DC∥AB,
∴∠GCO=∠EAO.
在△GCO和△EAO中,
$\left\{\begin{array}{l}{∠GOC=∠EAO}\\{OC=OA}\\{∠GCO=∠EAO}\end{array}\right.$,
∴△GCO≌△EAO,
∴OE=OG.
∴四邊形DEBG是平行四邊形.
點(diǎn)評(píng) 本題主要考查的是菱形的性質(zhì)、平行四邊形的判定、全等三角形的判定和性質(zhì),證得OG=OE是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 22015-1 | B. | 22015+1 | C. | $\frac{1}{2}$(22015-1) | D. | $\frac{1}{2}$(22015+1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com