分析 (1)要證AD是⊙O的切線,連接OA,只證∠DAO=90°即可.
(2)根據(jù)三角函數(shù)的知識可求出AD,從而根據(jù)勾股定理求出AB的長,根據(jù)三角函數(shù)的知識即可得出⊙O的直徑.
解答 (1)證明:連接OA;
∵BC為⊙O的直徑,BA平分∠CBF,AD⊥BF,
∴∠ADB=∠BAC=90°,∠DBA=∠CBA;
∵∠OAC=∠OCA,
∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,
∴DA為⊙O的切線.![]()
(2)解:∵BD=1,tan∠BAD=$\frac{1}{2}$,
∴AD=2,
∴AB=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
∴cos∠DBA=$\frac{\sqrt{5}}{5}$;
∵∠DBA=∠CBA,
∴BC=$\frac{AB}{cos∠CBA}$=$\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}}$=5.
∴⊙O的直徑為5.
點評 本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了三角函數(shù)的知識.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com