欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.菱形一條邊長(zhǎng)為5,一個(gè)內(nèi)角45°,那么它的面積是$\frac{25\sqrt{2}}{2}$.

分析 作DE⊥AB于E,先由銳角三角函數(shù)求出菱形的高DE,菱形的面積為AB•DE.

解答 解:作DE⊥AB于E,如圖所示:
∵四邊形ABCD是菱形,
∴AD=AB=5,
∵∠DEA=90°,
∴DE=AD•sin45°=5×$\frac{\sqrt{2}}{2}$=$\frac{5\sqrt{2}}{2}$,
∴菱形ABCD的面積=AB•DE=5×$\frac{5\sqrt{2}}{2}$=$\frac{25\sqrt{2}}{2}$;
故答案為:$\frac{25\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查了菱形的性質(zhì)、銳角三角函數(shù)、菱形面積的計(jì)算;根據(jù)銳角三角函數(shù)求出菱形的高是解決問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,PB為⊙O的切線,B為切點(diǎn),直線PO交⊙于點(diǎn)E、F,過(guò)點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO與⊙O交于點(diǎn)C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段OF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=12,tan∠F=$\frac{1}{2}$,求cos∠ACB的值和線段PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.正三角形,正四邊形可以鋪滿地面,但正十二邊形和正八邊形均不能鋪滿地面.試問(wèn),
(1)正三角形和正十二邊形的結(jié)合能否鋪滿地面?如果可以,舉例說(shuō)明;如果不行,說(shuō)明理由.
(2)由正四邊形和正八變形組合呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.$\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}$的小數(shù)部分值為$\sqrt{2}$-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.甲工程隊(duì)完成一項(xiàng)工程要n天,乙工程隊(duì)要比甲多用3天才能完成這項(xiàng)工程,兩隊(duì)共同工作一天完成這項(xiàng)工程的幾分之幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.因式分解:a7-14a6+49a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(-1,3)和點(diǎn)B(2,-3).
(1)求這個(gè)一次函數(shù)的表達(dá)式;
(2)求直線AB與坐標(biāo)軸所圍成的三角形的面積;
(3)將該函數(shù)的圖象向右平移6個(gè)單位,求平移后的圖象與x軸的交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.小明拿一張如圖的直角三角形紙片ABC,其中∠C=90°,他將紙片沿DE折疊,使點(diǎn)B與點(diǎn)A重合,∠CAD:∠BAD=4:3,則∠CDA的度數(shù)為54°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=$4\sqrt{3}$cm,AD=8cm,直線EF從點(diǎn)A出發(fā)沿AD方向勻速運(yùn)動(dòng),速度是2cm/s,運(yùn)動(dòng)過(guò)程中始終保持EF∥AC,EF交AD于E,交DC于點(diǎn)F;同時(shí),點(diǎn)P從點(diǎn)C出發(fā)沿CB方向勻速運(yùn)動(dòng),速度是1cm/s,連接PE、PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4).
(1)當(dāng)EP⊥BC時(shí),求t的值是多少?
(2)設(shè)△PEF的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使面積y最大?若存在,求出y的最大值;若不存在,說(shuō)明理由.
(4)連接AP,是否存在某一時(shí)刻t,使點(diǎn)E恰好在AP的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案