分析 (1)由AC為⊙O直徑,得到∠NAC+∠ACN=90°,由AB=AC,得到∠BAN=∠CAN,根據(jù)PC是⊙O的切線,得到∠ACN+∠PCB=90°,于是得到結(jié)論.
(2)由等腰三角形的性質(zhì)得到∠ABC=∠ACB,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠PBC=∠AMN,證出△BPC∽△MNA,即可得到結(jié)論.
解答 (1)證明:∵AC為⊙O直徑,
∴∠ANC=90°,
∴∠NAC+∠ACN=90°,
∵AB=AC,
∴∠BAN=∠CAN,
∵PC是⊙O的切線,
∴∠ACP=90°,
∴∠ACN+∠PCB=90°,
∴∠BCP=∠CAN,
∴∠BCP=∠BAN;
(2)∵AC=4,PC=3,
∴AP=5,
∴PB=1,
∵PC是⊙O的切線,
∴PC2=PM•PA,
∴PM=$\frac{9}{5}$,
∴AM=$\frac{16}{5}$,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠PBC+∠ABC=∠AMN+∠ACN=180°,
∴∠PBC=∠AMN,
由(1)知∠BCP=∠BAN,
∴△BPC∽△MNA,
∴$\frac{PB}{MN}$=$\frac{BC}{AM}$,
∴MN•BC=PB•AM=$\frac{16}{5}$.
點評 本題考查了切線的性質(zhì),等腰三角形的性質(zhì),圓周角定理,相似三角形的判定和性質(zhì),圓內(nèi)接四邊形的性質(zhì),解此題的關(guān)鍵是熟練掌握定理.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 50° | B. | 80° | C. | 100° | D. | 130° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2cm | B. | 3cm | C. | 4cm | D. | 1cm |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com