分析 (1)根據(jù)等邊對(duì)等角得∠CPB=∠CBP,根據(jù)垂直的定義得∠OBC=90°,即OB⊥CB,則CB與⊙O相切;
(2)設(shè)BC=CP=x,在Rt△OBC中,根據(jù)勾股定理得出CP=4,再在Rt△OBC中,由勾股定理得出AP,作CH⊥AB,可證明△OAP∽△HCP,得出HP,由垂徑定理得出PB=2PH,即可得出AB=AP+PB的長.
解答
解:(1)∵OA=OB
∴∠OAB=∠OBA
∵CP=CB
∴∠CPB=∠CBP
在Rt△AOP中
∠A+∠APO=90°
∴∠OBA+∠CBP=90° 即:∠OBC=90°
∴OB⊥CB
又∵OB是半徑
∴CB與⊙O相切;
(2)設(shè)BC=CP=x
在Rt△OBC中
OC2=BC2+OB2
即:(x+1)2=x2+32
解之得:x=4,即:CP=4
在Rt△OBC中
AP=$\sqrt{O{A}^{2}+O{P}^{2}}$=$\sqrt{9+1}$=$\sqrt{10}$
作CH⊥AB于H
∵∠AOP=∠CHP=90°,∠APO=∠CPH
∴△OAP∽△HCP
∴$\frac{OP}{HP}$=$\frac{AP}{CP}$,即$\frac{1}{HP}$=$\frac{\sqrt{10}}{4}$,
∴HP=$\frac{2\sqrt{10}}{5}$
∵CB=CP,CH⊥PB
∴PB=2PH=$\frac{4}{5}$$\sqrt{10}$
∴AB=AP+PB=$\frac{9}{5}$$\sqrt{10}$.
點(diǎn)評(píng) 本題考查了直線和圓的位置關(guān)系,以及勾股定理、垂徑定理,是一道綜合性的題目,掌握相似三角形的判定方法是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 3 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 10 | C. | 20 | D. | 40 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ${(\sqrt{3})^2}=3$ | B. | $±\sqrt{9}=3$ | C. | $\sqrt{16}=±4$ | D. | $\sqrt{{{(-3)}^2}}=-3$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com