分析 (1)首先證明∠B=30°,四邊形AEFC是平行四邊形,當(dāng)AC=AE=2時(shí),四邊形AECF是菱形,推出AE=EB=2,由ED∥AC,推出CD=BD=$\sqrt{3}$;
(2)由S△ABC=$\frac{1}{2}$×2×2$\sqrt{3}$=2$\sqrt{3}$,S四邊形AEDC=$\frac{2\sqrt{3}}{3}$,推出S△BDE=2$\sqrt{3}$-$\frac{2}{3}$$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$,推出$\frac{1}{2}$•(2$\sqrt{3}$-x)•$\frac{2\sqrt{3}-x}{\sqrt{3}}$=$\frac{4\sqrt{3}}{3}$,解方程即可;
解答 解:(1)在Rt△ABC中,∵∠ACB=90°,AC=2,BC=2$\sqrt{3}$,
∴tan∠B=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,![]()
∴∠B=30°,
∴AB=2AC=4,
∵∠ACB=∠BDE=90°,
∴AC∥EF,∵CF∥AE,
∴四邊形AEFC是平行四邊形,
∴AC=AE=2時(shí),四邊形AECF是菱形,
∴AE=EB=2,
∵ED∥AC,
∴CD=BD=$\sqrt{3}$,
∴x=$\sqrt{3}$時(shí),四邊形AEFC是菱形.
(2)∵S△ABC=$\frac{1}{2}$×2×2$\sqrt{3}$=2$\sqrt{3}$,S四邊形AEDC=$\frac{2\sqrt{3}}{3}$,
∴S△BDE=2$\sqrt{3}$-$\frac{2}{3}$$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$,
∴$\frac{1}{2}$•(2$\sqrt{3}$-x)•$\frac{2\sqrt{3}-x}{\sqrt{3}}$=$\frac{4\sqrt{3}}{3}$,
解得x=2$\sqrt{3}$-2$\sqrt{2}$ 或2$\sqrt{3}$+2$\sqrt{2}$(舍棄),
∴x=2$\sqrt{3}$-2$\sqrt{2}$.
點(diǎn)評(píng) 本題考查平行四邊形的判定和性質(zhì)、菱形的判定和性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
| A型 | B型 | |
| 價(jià)格(萬元/臺(tái)) | 12 | 10 |
| 處理污水量(噸/月) | 240 | 200 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y1<y2<y3 | B. | y1>y2>y3 | C. | y2<y3<y1 | D. | y3>y2>y1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com