| A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
分析 利用拋物線與x軸的交點(diǎn)個(gè)數(shù)可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),則可對(duì)②進(jìn)行判斷;由對(duì)稱軸方程得到b=-2a,則可對(duì)③進(jìn)行判斷;根據(jù)拋物線在x軸上方所對(duì)應(yīng)的自變量的范圍可對(duì)④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對(duì)⑤進(jìn)行判斷.
解答 解:函數(shù)圖象與x軸有2個(gè)交點(diǎn),則b2-4ac>0,故①錯(cuò)誤;
函數(shù)的對(duì)稱軸是x=1,則與x軸的另一個(gè)交點(diǎn)是(3,0),
則方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3,故②正確;
函數(shù)的對(duì)稱軸是x=-$\frac{2a}$=1,則2a+b=0成立,故③正確;
函數(shù)與x軸的交點(diǎn)是(-1,0)和(3,0)則當(dāng)y>0時(shí),x的取值范圍是-1<x<3,故④正確;
當(dāng)x>1時(shí),y隨x的增大而減小,則⑤錯(cuò)誤.
故選B.
點(diǎn)評(píng) 本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開口方向和大。寒(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)位置:拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定:△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8 | B. | 2$\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 時(shí)間t/天 | 1 | 3 | 6 | 10 | 36 | … |
| 日銷售量m/件 | 94 | 90 | 84 | 76 | 24 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com