分析 (1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;
(2)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC;
(3)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論.
解答 解:(1)AB∥CD.
理由:∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC,
故答案為:∠BAC=∠PQC+∠QPC;
(3)∠BAE+$\frac{1}{2}$∠MCD=90°.
如圖3,過E作EF∥AB,![]()
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+$\frac{1}{2}$∠MCD=90°.
點評 本題考查了平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵.解題時注意:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2a-1≥0 | B. | 2a+1≥0 | C. | 2a-1<0 | D. | 2a+1<0 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 5,$\sqrt{10}$ | B. | -5,$\sqrt{10}$ | C. | 5,±$\sqrt{10}$ | D. | -5,±$\sqrt{10}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com