分析 連接半徑OC,由切線性質(zhì)得:∠OCE=90°,則△OCE是等腰直角三角形,由勾股定理計(jì)算OE的長,證明∠EBF=∠EFB,則BE=EF=2$\sqrt{2}$-2,從而得出CF的長.
解答 解:連接OC、BC,
∵$\widehat{BC}$=$\widehat{BD}$,
∴∠BAC=∠DAB,
∵EC是⊙O的切線,![]()
∴∠OCE=90°,
∵∠E=45°,
∴△OCE是等腰直角三角形,
∴OC=CE=2,∠COE=45°,
∵OA=OC,
∴∠BAC=∠ACO=22.5°,
∴∠DAB=22.5°,
即∠DAC=22.5°+22.5°=45°,
∵A、D、B、C四點(diǎn)共圓,
∴∠CBF=∠DAC=45°,
∵∠BCF=∠ACO=22.5°,
∴∠BFE=22.5°+45°=67.5°,
△BFE中,∠FBE=180°-67.5°-45°=67.5°,
∴∠EBF=∠EFB,
∴BE=EF,
Rt△OCE中,OE=2$\sqrt{2}$,
∴BE=AO+OE-AB=2+2$\sqrt{2}$-4=2$\sqrt{2}$-2,
∴EF=BE=2$\sqrt{2}$-2,
∴CF=CE-EF=2-(2$\sqrt{2}$-2)=4-2$\sqrt{2}$,
故答案為:4-2$\sqrt{2}$.
點(diǎn)評 本題考查了切線的性質(zhì)、四點(diǎn)共圓的性質(zhì)、等腰直角三角形、等腰三角形的性質(zhì)和判定、勾股定理,利用角的大小關(guān)系得出線段的關(guān)系,并根據(jù)勾股定理列等式計(jì)算邊的長,從而使問題得以解決.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| x | … | -5 | -4 | -3 | -2 | -1 | -$\frac{1}{2}$ | $\frac{1}{2}$ | 1 | 2 | 3 | 4 | 5 | … |
| y | … | -$\frac{29}{10}$ | -$\frac{5}{2}$ | -$\frac{13}{6}$ | -2 | -$\frac{5}{2}$ | -$\frac{17}{4}$ | $\frac{17}{4}$ | $\frac{5}{2}$ | 2 | m | $\frac{5}{2}$ | $\frac{29}{10}$ | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com