分析 (1)利用四邊形的內(nèi)角和和已知條件中的對(duì)角相等得到鄰角互補(bǔ),從而判定兩組對(duì)邊平行,進(jìn)而證得結(jié)論;
(2)由(1)即可得出結(jié)論.
解答 解:(1)正確;理由如下:![]()
∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,
∴∠1+∠3=∠2+∠4.①
∵∠ABC=∠ADC,
即∠1+∠2=∠3+∠4,②
由①②相加、相減得:∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四邊形ABCD是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形).
(2)∵∠A:∠B:∠C:∠D=1:3:1:3,
∴∠A=∠C,∠B=∠D,
∴四邊形ABCD是平行四邊形(兩組對(duì)角分別相等的四邊形是平行四邊形);
故選:B.
點(diǎn)評(píng) 本題考查了平行四邊形的判定,解題的關(guān)鍵是了解平行四邊形的幾個(gè)判定定理,難度不大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 五個(gè)內(nèi)角都相等的五邊形為正五邊形 | |
| B. | 四個(gè)內(nèi)角都是直角的四邊形為正四邊形 | |
| C. | 六條邊都相等的六邊形是正六邊形 | |
| D. | 每個(gè)內(nèi)角都相等且每條邊也相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ∠A=∠1+∠2 | B. | 3∠A=2∠1+∠2 | C. | 2∠A=∠1+∠2 | D. | 3∠A=2(∠1+∠2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com