分析 如下圖②,按照小軍、小俊的證明思路即可解決問題.
【變式探究】如下圖③,借鑒小軍、小俊的證明思路即可解決問題.
【結(jié)論運(yùn)用】易證BE=BF,過點(diǎn)E作EQ⊥BF,垂足為Q,如下圖④,利用問題情境中的結(jié)論可得PG+PH=EQ,易證EQ=DC,BF=DF,只需求出BF即可.
解答 證明:(方法1)連接AP,如圖②
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP+S△ACP,
∴$\frac{1}{2}$AB•CF=$\frac{1}{2}$AB•PD+$\frac{1}{2}$AC•PE,
∵AB=AC,
∴CF=PD+PE;
(方法2)過點(diǎn)P作PG⊥CF,垂足為G,如圖②,
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDP=∠FGP=90°,
∴四邊形PDFG是矩形,![]()
∴DP=FG,∠DPG=90°,
∴∠CGP=90°,
∵PE⊥AC,
∴∠CEP=90°,
∴∠PGC=∠CEP,
∵∠BDP=∠DPG=90°,
∴PG∥AB,
∴∠GPC=∠B,
∵AB=AC,
∴∠B=∠ACB,
∴∠GPC=∠ECP,
在△PGC和△CEP中,
$\left\{\begin{array}{l}{∠PGC=∠CEP}\\{∠GPC=∠ECP}\\{PC=CP}\end{array}\right.$,
∴△PGC≌△CEP,
∴CG=PE,
∴CF=CG+FG,
=PE+PD;
【變式探究】
證明:連接AP,如圖③,![]()
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP-S△ACP,
∴$\frac{1}{2}$AB•CF=$\frac{1}{2}$AB•PD-$\frac{1}{2}$AC•PE,
∵AB=AC,
∴CF=PD-PE;
【結(jié)論運(yùn)用】過點(diǎn)E作EQ⊥BC,垂足為Q,如圖④,![]()
∵四邊形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°,
∵AD=8,CF=3,
∴BF=BC-CF=AD-CF=5,
由折疊可得:DF=BF,∠BEF=∠DEF,
∴DF=5,
∵∠C=90°,
∴DC=$\sqrt{D{F}^{2}-C{F}^{2}}=\sqrt{{5}^{2}-{3}^{2}}$=4,
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC,
∴四邊形EQCD是矩形,
∴EQ=DC=4,
∵AD∥BC,
∴∠DEF=∠EFB,
∵∠BEF=∠DEF,
∴∠BEF=∠EFB,
∴BE=BF,
由問題情境中的結(jié)論可得:PG+PH=EQ,
∴PG+PH=4,
∴PG+PH的值為4.
點(diǎn)評 本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定、全等三角形的性質(zhì)與判定、相似三角形的性質(zhì)與判定、平行線的性質(zhì)與判定、直角三角形斜邊上的中線等于斜邊的一半、勾股定理等知識,考查了用面積法證明幾何問題,考查了運(yùn)用已有的經(jīng)驗(yàn)解決問題的能力,體現(xiàn)了自主探究與合作交流的新理念,是充分體現(xiàn)新課程理念難得的好題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 僅有①③ | B. | 僅有①② | C. | 僅有②③ | D. | ①②③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{24}{5}$ | B. | $\frac{48}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com