分析 (1)延長(zhǎng)AE交DC的延長(zhǎng)線于點(diǎn)F,證明△AEB≌△FEC,根據(jù)全等三角形的性質(zhì)得到AB=FC,根據(jù)等腰三角形的判定得到DF=AD,證明結(jié)論;
(2)延長(zhǎng)AE交DF的延長(zhǎng)線于點(diǎn)G,利用同(1)相同的方法證明;
(3)延長(zhǎng)AE交CF的延長(zhǎng)線于點(diǎn)G,根據(jù)相似三角形的判定定理得到△AEB∽△GEC,根據(jù)相似三角形的性質(zhì)得到AB=$\frac{2}{3}$CG,計(jì)算即可.
解答 解:(1)如圖①,延長(zhǎng)AE交DC的延長(zhǎng)線于點(diǎn)F,
∵AB∥DC,
∴∠BAF=∠F,
∵E是BC的中點(diǎn),
∴CE=BE,
在△AEB和△FEC中,
$\left\{\begin{array}{l}{∠BAF=∠F}\\{∠AEB=∠FEC}\\{BE=CE}\end{array}\right.$,
∴△AEB≌△FEC,
∴AB=FC,
∵AE是∠BAD的平分線,
∴∠DAF=∠BAF,![]()
∴∠DAF=∠F,
∴DF=AD,
∴AD=DC+CF=DC+AB,
故答案為:AD=AB+DC;
(2)AB=AF+CF,
證明:如圖②,延長(zhǎng)AE交DF的延長(zhǎng)線于點(diǎn)G,
∵E是BC的中點(diǎn),
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠G,
在△AEB和△GEC中,
$\left\{\begin{array}{l}{∠BAE=∠G}\\{∠AEB=∠GEC}\\{BE=CE}\end{array}\right.$,
∴△AEB≌△GEC,
∴AB=GC,
∵AE是∠BAF的平分線,
∴∠BAG=∠FAG,
∵AB∥CD,
∴∠BAG=∠G,
∴∠FAG=∠G,
∴FA=FG,![]()
∴AB=CG=AF+CF;
(3)AB=$\frac{2}{3}$(CF+DF),
證明:如圖③,延長(zhǎng)AE交CF的延長(zhǎng)線于點(diǎn)G,
∵AB∥CF,
∴△AEB∽△GEC,
∴$\frac{AB}{CG}$=$\frac{BE}{EC}$=$\frac{2}{3}$,即AB=$\frac{2}{3}$CG,
∵AB∥CF,
∴∠A=∠G,
∵∠EDF=∠BAE,
∴∠FDG=∠G,
∴FD=FG,
∴AB=$\frac{2}{3}$CG=$\frac{2}{3}$(CF+DF).
點(diǎn)評(píng) 本題考查的是全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì),正確作出輔助性、靈活運(yùn)用相關(guān)的性質(zhì)定理和判定定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 50° | B. | 100° | C. | 30° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2×3×52×72 | B. | 2×32×5×72 | C. | 22×3×52×7 | D. | 22×32×5×7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=2x-1 | B. | y=2x+2 | C. | y=2x-2 | D. | y=2x+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 時(shí)刻 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 |
| 水位高度(米) | 5 | 5.3 | 5.6 | 5.9 | 6.2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com