分析 (1)延長(zhǎng)BA,CM交點(diǎn)N,先證明BC=BN,得出CN=2CE,再證明△BAF≌△CAN,得出對(duì)應(yīng)邊相等BF=CN,即可得出結(jié)論;
(2)作∠PDE=22.5,交CE的延長(zhǎng)線于P點(diǎn),交CA的延長(zhǎng)線于N,先證明PD=CD,得出PC=2CE,再證明△DNF≌△PNC,得出對(duì)應(yīng)邊相等DF=PC,即可得出結(jié)論.
解答 解:延長(zhǎng)BA,CM交點(diǎn)N,如圖(1)所示:
∵∠A=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠ACM=$\frac{1}{2}$∠ABC=22.5°,
∴∠BCM=67.5°,
∴∠BNC=67.5=∠BCM,
∴BC=BN,
∵BE⊥CE,
∴∠ABE=22.5°,CN=2CE,
∴∠ABE=∠ACM=22.5°,
在△BAF和△CAN中,$\left\{\begin{array}{l}{∠BAC=∠NAC=90°}&{\;}\\{AB=AC}&{\;}\\{∠ABF=∠ACM}&{\;}\end{array}\right.$,
∴△BAF≌△CAN(ASA),
∴BF=CN,
∴BF=2CE;
(2)保持上述關(guān)系;證明如下:
作∠PDE=22.5,交CE的延長(zhǎng)線于P點(diǎn),交CA的延長(zhǎng)線于N,
如圖(2)所示:
∵DE⊥PC,∠ECD=67.5,
∴∠EDC=22.5°,
∴∠PDE=∠EDC,∠NDC=45°,
∴∠DPC=67.5°,![]()
∴PD=CD,
∴PE=EC,
∴PC=2CE,
∵∠NDC=45°,∠NCD=45°,
∴∠NCD=∠NDC,∠DNC=90°,
∴ND=NC且∠DNC=∠PNC,
在△DNF和△PNC中,$\left\{\begin{array}{l}{∠DNC=∠PNC}&{\;}\\{ND=NC}&{\;}\\{∠PDE=∠PCN}&{\;}\end{array}\right.$,
∴△DNF≌△PNC(ASA),
∴DF=PC,
∴DF=2CE.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)以及等腰三角形的判定與性質(zhì);通過(guò)作輔助線證明等腰三角形和全等三角形是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com