欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.小紅將筆記本電腦水平放置在桌子上,顯示屏OB與底板OA所在水平線的夾角為120°,感覺最舒適(如圖1),側(cè)面示意圖為圖2.使用時為了散熱,她在底板下墊入散熱架ACO′后,電腦轉(zhuǎn)到AO′B′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=24cm,O′C⊥OA于點C,O′C=12cm.

(1)求∠CAO′的度數(shù).
(2)顯示屏的頂部B′比原來升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏O′B與水平線的夾角仍保持120°,則顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)多少度?

分析 (1)通過解直角三角形即可得到結(jié)果;
(2)過點B作BD⊥AO交AO的延長線于D,通過解直角三角形求得BD=OB•sin∠BOD=24×$\frac{\sqrt{3}}{2}$=12$\sqrt{3}$,由C、O′、B′三點共線可得結(jié)果;
(3)顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)30°,求得∠EO′B′=∠FO′A=30°,既是顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)30°.

解答 解:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=$\frac{O′C}{O′A}=\frac{O′C}{OA}=\frac{12}{24}=\frac{1}{2}$,
∴∠CAO′=30°;

(2)過點B作BD⊥AO交AO的延長線于D
∵sin∠BOD=$\frac{BD}{OB}$,
∴BD=OB•sin∠BOD,
∵∠AOB=120°,
∴∠BOD=60°,
∴BD=OB•sin∠BOD=24×$\frac{\sqrt{3}}{2}$=12$\sqrt{3}$,
∵O′C⊥OA,∠CAO′=30°,
∴∠AO′C=60°,
∵∠AO′B′=120°,
∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C-BD=24+12-12$\sqrt{3}$=36-12$\sqrt{3}$,
∴顯示屏的頂部B′比原來升高了(36-12$\sqrt{3}$)cm;

(3)顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)30°,
理由:∵顯示屏O′B與水平線的夾角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)30°.

點評 本題考查了解直角三角形的應(yīng)用,旋轉(zhuǎn)的性質(zhì),正確的畫出圖形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如圖所示的方式放置.點A1,A2,A3,…,和點C1,C2,C3,…,分別在直線y=x+1和x軸上,則點B1的坐標是(1,1);點Bn的坐標是${B_n}({{2^n}-1,{2^{n-1}}})$.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.閱讀下列材料,并用相關(guān)的思想方法解決問題.
計算:(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$)×($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$)-(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$-$\frac{1}{5}$)×($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$).
令$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$=t,則
原式=(1-t)(t+$\frac{1}{5}$)-(1-t-$\frac{1}{5}$)t
=t+$\frac{1}{5}$-t2-$\frac{1}{5}$t-$\frac{4}{5}$t+t2
=$\frac{1}{5}$
問題:
(1)計算
(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$-…-$\frac{1}{2014}$)×($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+…+$\frac{1}{2014}$+$\frac{1}{2015}$)-(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$-$\frac{1}{5}$-…-$\frac{1}{2014}$-$\frac{1}{2015}$)×($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{2014}$);
(2)解方程(x2+5x+1)(x2+5x+7)=7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過點P(-3,1),對稱軸是經(jīng)過(-1,0)且平行于y軸的直線.
(1)求m、n的值;
(2)如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知⊙O的直徑AB=12cm,AC是⊙O的弦,過點C作⊙O的切線交BA的延長線于點P,連接BC.
(1)求證:∠PCA=∠B;
(2)已知∠P=40°,點Q在優(yōu)弧ABC上,從點A開始逆時針運動到點C停止(點Q與點C不重合),當(dāng)△ABQ與△ABC的面積相等時,求動點Q所經(jīng)過的弧長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.湖南路大橋于今年5月1日竣工,為徒駭河景區(qū)增添了一道亮麗的風(fēng)景線.某校數(shù)學(xué)興趣小組用測量儀器測量該大橋的橋塔高度,在距橋塔AB底部50米的C處,測得橋塔頂部A的仰角為41.5°(如圖).已知測量儀器CD的高度為1米,則橋塔AB的高度約為( 。▍⒖紨(shù)據(jù):sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)
A.34米B.38米C.45米D.50米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.在等腰△ABC中,AB=AC,則有BC邊上的中線,高線和∠BAC的平分線重合于AD(如圖一).若將等腰△ABC的頂點A向右平行移動后,得到△A′BC(如圖二),那么,此時BC邊上的中線、BC邊上的高線和∠BA′C的平分線應(yīng)依次分別是A′D,A′F,A′E.(填A(yù)′D、A′E、A′F)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題正確的是( 。
A.對角線互相垂直的四邊形是菱形
B.一組對邊相等,另一組對邊平行的四邊形是平行四邊形
C.對角線相等的四邊形是矩形
D.對角線互相垂直平分且相等的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,要在寬為22米的九州大道兩邊安裝路燈,路燈的燈臂CD長2米,且與燈柱BC成120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當(dāng)燈罩的軸線DO通過公路路面的中心線時照明效果最佳,此時,路燈的燈柱BC高度應(yīng)該設(shè)計為( 。
A.(11-2$\sqrt{2}$)米B.(11$\sqrt{3}$-2$\sqrt{2}$)米C.(11-2$\sqrt{3}$)米D.(11$\sqrt{3}$-4)米

查看答案和解析>>

同步練習(xí)冊答案