分析 先得出a=-b或b=-c或c=-a,分三種情況代換,化簡(jiǎn)即可得出結(jié)論.
解答 解:∵三個(gè)不等于零的有理數(shù)a,b,c滿(mǎn)足(a+b)(b+c)(c+a)=0,∴a+b=0或b+c=0或c+a=0,∴a=-b或b=-c或c=-a,
當(dāng)a=-b時(shí),a+b+b=-b+b+c=c,
a3+b3+c3=(-b)3+b3+c3=-b3+b3+c3=c3,
a5+b5+c5=(-b)5+b5+c5=-b5+b5+c5=c5,
a9+b9+c9=(-b)9+b9+c9=-b9+b9+c9=c9,
a25+b25+c25=(-b)25+b25+c25=-b25+b25+c25=c25
∴$\frac{(a+b+c)({a}^{3}+^{3}+{c}^{3})({a}^{5}+^{5}+{c}^{5})({a}^{7}+^{7}+{c}^{7})({a}^{9}+^{9}+{c}^{9})}{{a}^{25}+^{25}+{c}^{25}}$=$\frac{c×{c}^{3}×{c}^{5}×{c}^{7}×{c}^{9}}{{c}^{25}}$=$\frac{{c}^{1+3+5+7+9}}{{c}^{25}}$=$\frac{{c}^{25}}{{c}^{25}}$=1,
同理:當(dāng)b=-c時(shí)或當(dāng)c=-a時(shí),則$\frac{(a+b+c)({a}^{3}+^{3}+{c}^{3})({a}^{5}+^{5}+{c}^{5})({a}^{7}+^{7}+{c}^{7})({a}^{9}+^{9}+{c}^{9})}{{a}^{25}+^{25}+{c}^{25}}$=1,
即:則$\frac{(a+b+c)({a}^{3}+^{3}+{c}^{3})({a}^{5}+^{5}+{c}^{5})({a}^{7}+^{7}+{c}^{7})({a}^{9}+^{9}+{c}^{9})}{{a}^{25}+^{25}+{c}^{25}}$=1,
故答案為1.
點(diǎn)評(píng) 此題主要考查了冪的乘方,積的次方,同底數(shù)冪的乘法,解本題的關(guān)鍵是得出a=-b或b=-c或c=-a,是一道很好的基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6.5 | B. | 6 | C. | 5.5 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5cm | B. | $2\sqrt{5}$cm | C. | 2$\sqrt{3}$cm | D. | $3\sqrt{5}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com