分析 (1)根據(jù)拋物線經(jīng)過點(diǎn)A(1,0),對(duì)稱軸是x=2列出方程組,解方程組求出b、c的值即可;
(2)因?yàn)辄c(diǎn)A與點(diǎn)C關(guān)于x=2對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),連接BC與x=2交于點(diǎn)P,則點(diǎn)P即為所求,求出直線BC與x=2的交點(diǎn)即可.
解答 解:(1)由題意得,$\left\{\begin{array}{l}{1-b+c=0}\\{\frac{2}=2}\end{array}\right.$,
解得b=4,c=3,
∴拋物線的解析式為.y=x2-4x+3;
(2)
∵點(diǎn)A與點(diǎn)C關(guān)于x=2對(duì)稱,
∴連接BC與x=2交于點(diǎn)P,則點(diǎn)P即為所求,
根據(jù)拋物線的對(duì)稱性可知,點(diǎn)C的坐標(biāo)為(3,0),
y=x2-4x+3與y軸的交點(diǎn)為(0,3),
∴設(shè)直線BC的解析式為:y=kx+b,
$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$,
解得,k=-1,b=3,
∴直線BC的解析式為:y=-x+3,
則直線BC與x=2的交點(diǎn)坐標(biāo)為:(2,1)
∴點(diǎn)P的坐標(biāo)為:(2,1).
點(diǎn)評(píng) 本題考查的是待定系數(shù)法求二次函數(shù)的解析式和最短路徑問題,掌握待定系數(shù)法求解析式的一般步驟和軸對(duì)稱的性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com