分析 (1)連接OD,證∠ODF=90°即可.
(2)利用△CDF是30°的直角三角形可求得CF長,同理可利用△FGA中的60°的三角函數(shù)值可求得FG長.
(3)過D作DH⊥AB于H.利用△BDH是30°的直角三角形可求得BH長,同理可求得AG,然后根據(jù)GH=AB-AG-BH求得即可.
解答
(1)證明:連結OD,如圖1,
∵△ABC為等邊三角形,
∴∠C=∠A=∠B=60°.
而OD=OB,
∴△ODB是等邊三角形,∠ODB=60°,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切線.
(2)解:∵OD∥AC,點O為AB的中點,
∴OD為△ABC的中位線.
∴BD=CD=6.
在Rt△CDF中,∠C=60°,
∴∠CDF=30°,
∴CF=$\frac{1}{2}$CD=3.
∴AF=AC-CF=12-3=9,
在Rt△AFG中,∵∠A=60°,
∴FG=AF×sinA=9×$\frac{\sqrt{3}}{2}$=$\frac{9\sqrt{3}}{2}$.
(3)解:如圖2,過D作DH⊥AB于H.![]()
∵FG⊥AB,DH⊥AB,
∴FG∥DH,
在Rt△BDH中,∠B=60°,
∴∠BDH=30°,
∴BH=$\frac{1}{2}$BD=3,DH=$\sqrt{3}$BH=3$\sqrt{3}$.
在Rt△AFG中,∵∠AFG=30°,
∴AG=$\frac{1}{2}$AF=$\frac{9}{2}$,
∵GH=AB-AG-BH=12-$\frac{9}{2}$-3=$\frac{9}{2}$,F(xiàn)G⊥AB,
∴點D到FG的距離是$\frac{9}{2}$.
點評 本題主要考查了切線的判定與性質,等邊三角形的性質,30°的直角三角形的性質,解直角三角形等知識.判斷直線和圓的位置關系,一般要猜想是相切,再證直線和半徑的夾角為90°即可.注意利用特殊的三角形和三角函數(shù)來求得相應的線段長.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | ①②③ | B. | ①②④ | C. | ②③④ | D. | ①③④ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
| 最上層的產品數(shù)(支) | 1 | 2 | 3 | 4 | … | 10 | … |
| 產品總數(shù) | 1 | 3 | 6 | 10 | … | 55 | … |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com