欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=16cm,BC=22cm,點P從點A出發(fā),以1cm/s的速度向點D運動,點Q從點C同時出發(fā),以3cm/s的速度沿射線CB運動,當點P運動到點D時停止運動,設(shè)運動時間為t秒.
(1)當t為多少時,以A、B、Q、P為頂點的四邊形成為平行四邊形?
(2)四邊形PBQD是否能成為菱形?若能,求出t的值;若不能,請說明理由,并探究如何改變Q點的速度(勻速運動),使四邊形PBQD在某一時刻為菱形,求點Q的速度.

分析 (1)因為∠B=90°,AP∥BQ,由矩形的判定可知當AP=BQ時,四邊形ABQP成為矩形;
(2)因為PD∥BQ,當PD=BQ=BP時,四邊形PBQD能成為菱形,先由PD=BQ求出運動時間t的值,再代入求BP,發(fā)現(xiàn)BP≠PD,判斷此時四邊形PBQD不能成為菱形;設(shè)Q點的速度改變?yōu)関cm/s時,四邊形PBQD在時刻t為菱形,根據(jù)PD=BQ=BP列出關(guān)于v、t的方程組,解方程組即可求出點Q的速度.

解答 解:(1)∵∠B=90°,AP∥BQ,
∴當AP=BQ時,四邊形ABQP成為矩形,
此時有t=22-3t,解得t=$\frac{11}{2}$.
∴當t=$\frac{11}{2}$s時,四邊形ABQP成為矩形;


(2)四邊形PBQD不能成為菱形.理由如下:
∵PD∥BQ,
∴當PD=BQ=BP時,四邊形PBQD能成為菱形.
由PD=BQ,得16-t=22-3t,解得t=3,
當t=3時,PD=BQ=13,BP=$\sqrt{A{B}^{2}+A{P}^{2}}$=$\sqrt{{8}^{2}+{t}^{2}}$=$\sqrt{{8}^{2}+{3}^{2}}$=$\sqrt{73}$≠13,
∴四邊形PBQD不能成為菱形;
如果Q點的速度改變?yōu)関cm/s時,能夠使四邊形PBQD在時刻ts為菱形,
由題意,得$\left\{\begin{array}{l}{16-t=22-vt}\\{16-t=\sqrt{{8}^{2}+{t}^{2}}}\end{array}\right.$,解得 $\left\{\begin{array}{l}{t=6}\\{v=2}\end{array}\right.$.
故點Q的速度為2cm/s時,能夠使四邊形PBQD在某一時刻為菱形.

點評 本題借助動點主要考查了矩形、菱形的判定,勾股定理,等腰梯形的判定與性質(zhì),以及方程和方程組在幾何圖形中的應(yīng)用,難度適中,用含t的代數(shù)式正確表示出相關(guān)線段的長度是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

18.已知拋物線y=a(x-1)(x-3)-2(a≠0)與x軸交點的橫坐標為m,n,且m<n,又點(x0,y0)是拋物線上一點,則下列結(jié)論正確的是(  )
A.該拋物線可由拋物線y=ax2向右平移2個單位,向下平移2個單位得到
B.若1<m<n<3,則a>0
C.若1<x0<3,則y0<0
D.不論a取何值,m+n=4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖,CD是△ABC的角平分線,AE⊥CD,垂足為E,F(xiàn)是AC的中點,求證:EF∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.如圖,在正方形ABCD中,點E,F(xiàn)分別為CD,AD上的點,點B′、C′分別為邊BC、AB上的點,B′E⊥CF于P,連接AP、BP,∠APB=90°.
(1)求證:∠FB′C′=90°.
(2)用尺規(guī)圖法作出正方形ABCD邊上的所有Q點,使∠FQC′=90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.先閱讀,然后解方程組.
解方程組
$\left\{\begin{array}{l}{x-y-1=0①}\\{4(x-y)-y=5②}\end{array}\right.$  時,
可由 ①得x-y=1,③
然后再將③代入②得4×1-y=5,求得y=-1,
從而進一步求得$\left\{\begin{array}{l}{x=0①}\\{y=-1②}\end{array}\right.$ 這種方法被稱為“整體代人法”,
請用這樣的方法解下列方程組$\left\{\begin{array}{l}{2x-3y-2=0}\\{\frac{2x-3y+5}{7}+2y=9}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.如圖1,在△ABC中,∠ABC與∠ACB的角平分線交于O點.
(1)若∠A=40°,則∠BOC=110°;
(2)若∠A=n°,則∠BOC=90+$\frac{n}{2}$°;
(3)若∠A=n°,∠ABC與∠ACB的角平分線交于O點,∠ABO的平分線與∠ACO的平分線交于點O1,…,∠ABO2016的平分線與∠ACO2016的平分線交于點O2017,則∠O2017=$\frac{1}{{2}^{2018}}$×180°+$\frac{{2}^{2018}-1}{{2}^{2018}}$n°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

2.如圖,矩形ABCD的對角線AC,BD交于點O,∠AOB=60°,AB=4,則矩形ABCD的面積為( 。
A.16$\sqrt{3}$B.32C.8$\sqrt{3}$D.32$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.下列運算正確的是(  )
A.($\frac{1}{3}$)-2=-9B.$\sqrt{4}$=±2C.-2(a-b)=-2a-2bD.ab4÷(-ab)=-b3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.甲乙兩地相距8000米.張亮騎自行車從甲地出發(fā)勻速前往乙地,出發(fā)10分鐘后,李偉步行從甲地出發(fā)同路勻速前往乙地.張亮到達乙地后休息片刻,以原來的速度從原路返回.如圖所示是兩人離甲地的距離y(米)與李偉步行時間x(分)之間的函數(shù)圖象.
(1)求兩人相遇時李偉離乙地的距離;
(2)請你判斷:當張亮返回到甲地時,李偉是否到達乙地?

查看答案和解析>>

同步練習冊答案