分析 根據(jù)已知條件求得∠ACD=∠BCE,再利用角角邊定理可證的△ACD≌△CBE,得出CE=AD,再根據(jù)BE=CD=CE-DE,將已知數(shù)值代入即可求得答案.
解答 解:∵∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,
∴∠ACD=∠ACB-∠BCE=90°-∠BCE,∠CBE=90°-∠BCE,
∴∠ACD=∠CBE,
在△ACD與△CBE中,
$\left\{\begin{array}{l}{∠ADC=∠CEB}\\{∠ACD=∠CBE}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△CBE(AAS).
∴CE=AD=5,
∴BE=CD=CE-DE=AD-DE=5-2.3=2.7.
答:BE的長是2.7cm.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),熟練掌握等腰直角三角形的性質(zhì)和全等三角形的判定與性質(zhì)是本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com