| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{2}$ |
分析 延長AD交⊙O于E,連接BE,BI,求出∠E=90°,根據(jù)內(nèi)心求出∠3=∠4,∠1=∠2,求出∠3=∠5,∠IBE=∠BIE,推出BE=IE,求出AE=2BE,解直角三角形求出tan∠CAD=tan∠BAE=$\frac{BE}{AE}$,即可求出答案.
解答 解:![]()
延長AD交⊙O于E,連接BE,BI,
則∠E=90°,
∵I為△ABC的內(nèi)心,
∴∠3=∠4,∠1=∠2(∠CAD=∠BAE),
∵∠4=∠5,
∴∠3=∠5,
∴∠2+∠5=∠1+∠3,
∴∠IBE=∠BIE,
∴BE=IE,
∵OI⊥AE,OI過O,
∴AE=2AI,
∴AE=2BE,
∴tan∠CAD=tan∠BAE=$\frac{BE}{AE}$=$\frac{BE}{2BE}$=$\frac{1}{2}$.
故選A.
點(diǎn)評(píng) 本題考查了三角形的內(nèi)切圓和內(nèi)心,三角形的外接圓和外心,垂徑定理,圓周角定理,三角形外角性質(zhì),等腰三角形的判定等知識(shí)點(diǎn)的應(yīng)用,正確作出輔助線后求出AE=2BE是解此題的關(guān)鍵,有一定的難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com