分析 (1)根據(jù)等腰三角形的性質(zhì),由AB=AC,AD=DC得∠C=∠B,∠1=∠C,則∠1=∠B,根據(jù)圓周角定理得∠E=∠B,∠ADE=90°,所以∠1+∠EAD=90°,然后根據(jù)切線的判定定理即可得到AC是⊙O的切線;
(2)過點D作DF⊥AC于點F,如圖,根據(jù)等腰三角形的性質(zhì)得CF=$\frac{1}{2}$AC=4,在Rt△CDF中,根據(jù)已知條件得到DF,DC,利用勾股定理得CF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解答 (1)證明:∵AB=AC,AD=DC,
∴∠C=∠B,∠1=∠C,
∴∠1=∠B,
又∵∠E=∠B,
∴∠1=∠E,
∵AE是⊙O的直徑,
∴∠ADE=90°,
∴∠E+∠EAD=90°,
∴∠1+∠EAD=90°,即∠EAC=90°,
∴AE⊥AC,![]()
∴AC是⊙O的切線;
(2)解:過點D作DF⊥AC于點F,如圖,
∵DA=DC,
∴CF=$\frac{1}{2}$AC=4,
在Rt△CDF中,∵cosC=$\frac{CF}{CD}$=$\frac{2}{3}$,
∴DC=6,
∴AD=6,
∵∠ADE=∠DFC=90°,∠E=∠C,
∴△ADE∽△DFC,
∴$\frac{AE}{DC}$=$\frac{AD}{DF}$,即$\frac{AE}{6}$=$\frac{6}{\sqrt{{6}^{2}-{4}^{2}}}$,解得AE=$\frac{18\sqrt{5}}{5}$,
即⊙O的直徑為$\frac{18\sqrt{5}}{5}$.
點評 本題考查了切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了等腰三角形的性質(zhì)和相似三角形的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | (1-20%)(1+x)2=1+15% | B. | (1+15%%)(1+x)2=1-20% | ||
| C. | 2(1-20%)(1+x)=1+15% | D. | 2(1+15%)(1+x)=1-20% |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com