欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 練習(xí)冊解析答案 > 人教金學(xué)典同步解析與測評八年級數(shù)學(xué)上冊人教版 > 第82頁解析答案
人教金學(xué)典同步解析與測評八年級數(shù)學(xué)上冊人教版

人教金學(xué)典同步解析與測評八年級數(shù)學(xué)上冊人教版

注:當(dāng)前書本只展示部分頁碼答案,查看完整答案請下載作業(yè)精靈APP。練習(xí)冊人教金學(xué)典同步解析與測評八年級數(shù)學(xué)上冊人教版答案主要是用來給同學(xué)們做完題方便對答案用的,請勿直接抄襲。

2. 如圖,在等邊三角形ABC中,D是AC的中點(diǎn),E是BC延長線上一點(diǎn),且CE = CD,F(xiàn)是BE的中點(diǎn),DF⊥BC,垂足為F. 求證:BF = CF.
答案:證明:連接BD. 因?yàn)閈triangle ABC是等邊三角形,D是AC中點(diǎn),所以BD平分∠ABC,∠ABC = 60°,則∠DBC=\frac{1}{2}∠ABC = 30°. 又因?yàn)镃E = CD,所以∠E = ∠CDE,且∠ACB = ∠E+∠CDE = 60°,所以∠E=\frac{1}{2}∠ACB = 30°. 所以∠DBC = ∠E,所以BD = DE. 因?yàn)镕是BE中點(diǎn),DF⊥BC,根據(jù)等腰三角形三線合一,所以BF = CF.
3. 如圖,在四邊形ABCD中,AD = CB,AB = CD,E為AD上一點(diǎn),且∠A = 60°,連接BD,CE,CE,相交于點(diǎn)F,CF//AB. (1)判斷\triangle DEF的形狀,并說明理由;(2)若AD = 16,CE = 24,求CF的長.
答案:(1)因?yàn)锳D = CB,AB = CD,所以四邊形ABCD是平行四邊形,所以AB//CD. 又因?yàn)镃F//AB,所以CF//CD. 因?yàn)椤螦 = 60°,四邊形ABCD是平行四邊形,所以∠ADC = ∠A = 60°. 因?yàn)锳D = CB,AB = CD,所以\triangle ABD≌\triangle CDB(SSS),所以∠ADB = ∠CBD. 因?yàn)镃F//AB,所以∠DFC = ∠ABD,所以∠DFC = ∠FDC = 60°,所以\triangle DEF是等邊三角形. (2)設(shè)CF = x,則DE = EF = DF = 16 - x. 因?yàn)镃E = 24,所以CF + EF = 24,即x+(16 - x)=24(此方程錯誤,重新分析:過D作DG⊥CF于G,因?yàn)閈triangle DEF是等邊三角形,∠DFC = 60°,設(shè)DE = EF = DF = y,則CF = 24 - y. 在Rt\triangle DFG中,∠FDG = 30°,F(xiàn)G=\frac{1}{2}y,DG=\frac{\sqrt{3}}{2}y. 因?yàn)樗倪呅蜛BCD是平行四邊形,AB//CF,AD = 16,所以CD = AB,AD//BC. 因?yàn)镃F//AB,所以四邊形ABCF是平行四邊形,所以AB = CF = 24 - y,所以CD = 24 - y. 在Rt\triangle DCG中,根據(jù)勾股定理DG^{2}+CG^{2}=CD^{2},CG = CF - FG = 24 - y-\frac{1}{2}y=24-\frac{3}{2}y,(\frac{\sqrt{3}}{2}y)^{2}+(24-\frac{3}{2}y)^{2}=(24 - y)^{2},展開求解得y = 8,所以CF = 24 - 8 = 16.
4. 如圖,\triangle ABC是等腰三角形,AC = AB,設(shè)∠BAC = β. (1)如圖,點(diǎn)D在線段AB上,若∠ACD = 45°,求∠DCB的度數(shù)(用含β的代數(shù)式表示);(2)如圖(2),若AB = BD,過點(diǎn)B作BH⊥AD,垂足為H,BH=\frac{1}{2}BC,求證:∠BAC = 180° - 2∠ABD.
答案:(1)因?yàn)锳C = AB,所以∠ACB = ∠ABC=\frac{1}{2}(180° - β)=90°-\frac{β}{2}. 又因?yàn)椤螦CD = 45°,所以∠DCB = ∠ACB - ∠ACD=(90°-\frac{β}{2})- 45°=45°-\frac{β}{2}. (2)因?yàn)锳B = BD,BH⊥AD,所以∠ABD = 2∠ABH. 因?yàn)锽H=\frac{1}{2}BC,在Rt\triangle BHC中,sin∠ACB=\frac{BH}{BC}=\frac{1}{2},所以∠ACB = 30°. 因?yàn)锳C = AB,所以∠ABC = ∠ACB = 30°. 設(shè)∠ABH = x,則∠ABD = 2x,在\triangle ABC中,∠BAC + ∠ABC+∠ACB = 180°,即∠BAC+30° + 30°=180°,且∠ABC = ∠ABH + ∠HBC,∠HBC = 30° - x. 又因?yàn)锳C = AB,所以∠BAC = 180°-2∠ABC,而∠ABC = ∠ABH+(30° - ∠ABH)=30°,∠ABD = 2∠ABH,所以∠BAC = 180° - 2∠ABD.
5. 如圖,ABC的邊AB上一點(diǎn)P,過點(diǎn)P作PE⊥AC,垂足為E,Q為BC延長線上一點(diǎn),Q為BC延長線上一點(diǎn),連接PQ,交AC于點(diǎn)D,當(dāng)PA = CQ時,(1)求證:DE為PQ的中點(diǎn);(2)求DE的長.
答案:(1)過Q作QF⊥AC交AC的延長線于F. 因?yàn)镻E⊥AC,QF⊥AC,所以∠AEP = ∠CFQ = 90°. 因?yàn)椤螦DE = ∠QDF,PA = CQ,∠EAP = ∠FCQ(對頂角的余角相等),所以\triangle AEP≌\triangle CFQ(AAS),所以PE = QF,AE = CF. 又因?yàn)椤螾ED = ∠QFD = 90°,∠PDE = ∠QDF,PE = QF,所以\triangle PDE≌\triangle QDF(AAS),所以DE = DF,即DE為PQ的中點(diǎn). (2)由于題目中未給出任何線段的長度數(shù)值,無法求出DE的具體長度.