?。當(dāng)n為奇數(shù)時(shí),即λ<(
)n-1恒成立.
即(-1)n-1λ<(
)n-1恒成立.
∵an+an-1>0,∴an-an-1=1,數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為1. 7分
∴an=n. 8分
(3)∵an=n.,∴bn=3n+(-1)n-1λ?2n.
要使bn+1>bn恒成立,
bn+1-bn=3n+1-3n+(-1)nλ?2n+1-(-1)n-1λ?2n=2×3n-3λ(-1)n-1?2n>0恒成立, 9分
又∵a1>0,∴a1=1. 1分
當(dāng)n≥2時(shí),a13+a23+a33+…+an3=Sn2①
a13+a23+a33+…+an-13=Sn-12② 2分
由①②得,an3=(Sn-Sn-1)(Sn-Sa-1)(Sa+Sa-1)=an(Sn+Sn-1).
∵an>0,∴an2=Sn+Sn-1,
又Sn-1=Sa-aa,∴an2=2Sn-an. 3分
當(dāng)n=1時(shí),a1=1適合上式.
∴an2=2Sn-an. 4分
(2)由(1)知,an2=2Sn-an,③
當(dāng)n≥2時(shí),an-12=2Sn-1-an-1,④ 5分
由③④得,an2-an-12=2(Sn-Sn-1)-an+an-1=an+an-1. 6分
82、(臨沂高新區(qū)?理科)設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*,都有a13+a23+a33+…+an3=Sn2,其中Sn為數(shù)例{an}的前n項(xiàng)和.
(1)求證:an2=2Sn-an;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=3n+(-1)n-1λ?2an(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有bn+1>bn成立.
(解)(1)由已知,當(dāng)n=1時(shí),a13=a12,
∴
. ………………………………12分
∴
, …………………………………………………………10分
∵等差數(shù)列
的前
項(xiàng)和
有最大值,
由題意可得
,解得
,
又
,
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com