欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  429332  429340  429346  429350  429356  429358  429362  429368  429370  429376  429382  429386  429388  429392  429398  429400  429406  429410  429412  429416  429418  429422  429424  429426  429427  429428  429430  429431  429432  429434  429436  429440  429442  429446  429448  429452  429458  429460  429466  429470  429472  429476  429482  429488  429490  429496  429500  429502  429508  429512  429518  429526  447090 

1.從長(zhǎng)方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為6,8,12,則其對(duì)角線的長(zhǎng)為

  (A)3        (B)5          (C)        (D)

試題詳情

3.突出重點(diǎn)

綜合考查在知識(shí)與方法的交匯點(diǎn)處設(shè)計(jì)命題,在不等式問(wèn)題中蘊(yùn)含著豐富的函數(shù)思想,不等式又為研究函數(shù)提供了重要的工具,不等式與函數(shù)既是知識(shí)的結(jié)合點(diǎn),又是數(shù)學(xué)知識(shí)與數(shù)學(xué)方法的交匯點(diǎn),因而在歷年高考題中始終是重中之重。在全面考查函數(shù)與不等式基礎(chǔ)知識(shí)的同時(shí),將不等式的重點(diǎn)知識(shí)以及其他知識(shí)有機(jī)結(jié)合,進(jìn)行綜合考查,強(qiáng)調(diào)知識(shí)的綜合和知識(shí)的內(nèi)在聯(lián)系,加大數(shù)學(xué)思想方法的考查力度,是高考對(duì)不等式考查的又一新特點(diǎn)。

試題詳情

2.強(qiáng)化不等式的應(yīng)用

突出不等式的知識(shí)在解決實(shí)際問(wèn)題中的應(yīng)用價(jià)值,借助不等式來(lái)考查學(xué)生的應(yīng)用意識(shí)。

高考中除單獨(dú)考查不等式的試題外,常在一些函數(shù)、數(shù)列、立體幾何、解析幾何和實(shí)際應(yīng)用問(wèn)題的試題中涉及不等式的知識(shí),加強(qiáng)不等式應(yīng)用能力,是提高解綜合題能力的關(guān)鍵.因此,在復(fù)習(xí)時(shí)應(yīng)加強(qiáng)這方面訓(xùn)練,提高應(yīng)用意識(shí),總結(jié)不等式的應(yīng)用規(guī)律,才能提高解決問(wèn)題的能力。

如在實(shí)際問(wèn)題應(yīng)用中,主要有構(gòu)造不等式求解或構(gòu)造函數(shù)求函數(shù)的最值等方法,求最值時(shí)要注意等號(hào)成立的條件,避免不必要的錯(cuò)誤。

試題詳情

1.在復(fù)習(xí)不等式的解法時(shí),加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練與復(fù)習(xí)

解不等式的過(guò)程是一個(gè)等價(jià)轉(zhuǎn)化的過(guò)程,通過(guò)等價(jià)轉(zhuǎn)化可簡(jiǎn)化不等式(組),以快速、準(zhǔn)確求解。

加強(qiáng)分類討論思想的復(fù)習(xí).在解不等式或證不等式的過(guò)程中,如含參數(shù)等問(wèn)題,一般要對(duì)參數(shù)進(jìn)行分類討論.復(fù)習(xí)時(shí),學(xué)生要學(xué)會(huì)分析引起分類討論的原因,合理的分類,做到不重不漏。

加強(qiáng)函數(shù)與方程思想在不等式中的應(yīng)用訓(xùn)練。不等式、函數(shù)、方程三者密不可分,相互聯(lián)系、互相轉(zhuǎn)化.如求參數(shù)的取值范圍問(wèn)題,函數(shù)與方程思想是解決這類問(wèn)題的重要方法.在不等式的證明中,加強(qiáng)化歸思想的復(fù)習(xí),證不等式的過(guò)程是一個(gè)把已知條件向要證結(jié)論的一個(gè)轉(zhuǎn)化過(guò)程,既可考查學(xué)生的基礎(chǔ)知識(shí),又可考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力,正因?yàn)樽C不等式是高考考查學(xué)生代數(shù)推理能力的重要素材,復(fù)習(xí)時(shí)應(yīng)引起我們的足夠重視.

試題詳情

題型1:簡(jiǎn)單不等式的求解問(wèn)題

例1.(福建省福州市普通高中09年高三質(zhì)量檢查)已知

,則不等式

的解集是                                              (   )

A.(-2,0)                      B.

C.                   D.

答案  C 

8.如果那么的取值范圍是_______。

答案:

解析:因

易錯(cuò)警示:利用真數(shù)大于零得x不等于 ,從而正弦值就不等于.其實(shí)x等于時(shí)可取得該值。

例2.同學(xué)們都知道,在一次考試后,如果按順序去掉一些高分,那么班級(jí)的平均分將降低;

  反之,如果按順序去掉一些低分,那么班級(jí)的平均分將提高. 這兩個(gè)事實(shí)可以用數(shù)學(xué)語(yǔ)

  言描述為:若有限數(shù)列 滿足,則          

                             (結(jié)論用數(shù)學(xué)式子表示).

試題詳情

8.線性規(guī)劃

(1)平面區(qū)域

一般地,二元一次不等式在平面直角坐標(biāo)系中表示某一側(cè)所有點(diǎn)組成的平面區(qū)域。我們把直線畫(huà)成虛線以表示區(qū)域不包括邊界直線。當(dāng)我們?cè)谧鴺?biāo)系中畫(huà)不等式所表示的平面區(qū)域時(shí),此區(qū)域應(yīng)包括邊界直線,則把直線畫(huà)成實(shí)線.

說(shuō)明:由于直線同側(cè)的所有點(diǎn)的坐標(biāo)代入,得到實(shí)數(shù)符號(hào)都相同,所以只需在直線某一側(cè)取一個(gè)特殊點(diǎn),從的正負(fù)即可判斷表示直線哪一側(cè)的平面區(qū)域。特別地,當(dāng)時(shí),通常把原點(diǎn)作為此特殊點(diǎn).

(2)有關(guān)概念

引例:設(shè),式中變量滿足條件,求的最大值和最小值。

由題意,變量所滿足的每個(gè)不等式都表示一個(gè)平面區(qū)域,不等式組則表示這些平面區(qū)域的公共區(qū)域。由圖知,原點(diǎn)不在公共區(qū)域內(nèi),當(dāng)時(shí),,即點(diǎn)在直線上,作一組平行于的直線,可知:當(dāng)的右上方時(shí),直線上的點(diǎn)滿足,即,而且,直線往右平移時(shí),隨之增大。

由圖象可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),對(duì)應(yīng)的最大,

當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),對(duì)應(yīng)的最小,所以,。

在上述引例中,不等式組是一組對(duì)變量的約束條件,這組約束條件都是關(guān)于的一次不等式,所以又稱為線性約束條件。是要求最大值或最小值所涉及的變量的解析式,叫目標(biāo)函數(shù)。又由于的一次解析式,所以又叫線性目標(biāo)函數(shù)。

一般地,求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問(wèn)題,統(tǒng)稱為線性規(guī)劃問(wèn)題。滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域。在上述問(wèn)題中,可行域就是陰影部分表示的三角形區(qū)域。其中可行解分別使目標(biāo)函數(shù)取得最大值和最小值,它們都叫做這個(gè)問(wèn)題的最優(yōu)解.

試題詳情

7.對(duì)數(shù)不等式

  

   等,

  

(1)當(dāng)時(shí),;

(2)當(dāng)時(shí),。

試題詳情

6.指數(shù)不等式

  

   ;

試題詳情

5.簡(jiǎn)單的絕對(duì)值不等式

絕對(duì)值不等式適用范圍較廣,向量、復(fù)數(shù)的模、距離、極限的定義等都涉及到絕對(duì)值不等式。高考試題中,對(duì)絕對(duì)值不等式從多方面考查。

解絕對(duì)值不等式的常用方法:

①討論法:討論絕對(duì)值中的式于大于零還是小于零,然后去掉絕對(duì)值符號(hào),轉(zhuǎn)化為一般不等式;

②等價(jià)變形:

解絕對(duì)值不等式常用以下等價(jià)變形:

|x|<ax2<a2-a<x<a(a>0),

|x|>ax2>a2x>a或x<-a(a>0)。

一般地有:

|f(x)|<g(x)-g(x)<f(x)<g(x),

|f(x)|>g(x)f(x)>g (x)或f(x)<g(x)。

試題詳情


同步練習(xí)冊(cè)答案