| A. | 3 | B. | 5 | C. | 2或3 | D. | 3或5 |
分析 根據(jù)平行線的性質(zhì)得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代換得到∠DFC=∠FDC,根據(jù)等腰三角形的判定得到CF=CD,同理BE=AB,根據(jù)已知條件得到四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到AB=CD,AD=BC,即可得到結(jié)論.
解答
解:①如圖1,在?ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∵EF=2,
∴BC=BE+CF-EF=2AB-EF=8,
∴AB=5;
②
在?ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于點(diǎn)E,DF平分∠ADC交BC于點(diǎn)F,
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∵EF=2,
∴BC=BE+CF=2AB+EF=8,
∴AB=3;
綜上所述:AB的長(zhǎng)為3或5.
故選D.
點(diǎn)評(píng) 本題考查了等腰三角形的判定和性質(zhì),平行線的性質(zhì),平行四邊形的性質(zhì),解答本題的關(guān)鍵是判斷出BA=BE=CF=CD.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (a-b)2=a2-b2 | B. | (1+a)(a-1)=a2-1 | C. | a2+ab+b2=(a+b)2 | D. | (x+3)2=x2+3x+9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 50° | B. | 40° | C. | 45° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3,3,0.4 | B. | 2,3,2 | C. | 3,2,0.4 | D. | 3,3,2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com