分析 (1)根據(jù)AB坐標(biāo)可以求得∠OAB大小,根據(jù)角平分線性質(zhì)可求得∠OAC大小,即可解題;
(2)根據(jù)題干中給出的∠POC=$\frac{1}{3}$∠AOC、∠PCE=$\frac{1}{3}$∠ACE可以求得∠PCE和∠POC的大小,再根據(jù)三角形外角等于不相鄰兩內(nèi)角和即可解題;
(3)解法和(2)相同,根據(jù)題干中給出的∠POC=$\frac{1}{n}$∠AOC、∠PCE=$\frac{1}{n}$∠ACE可以求得∠PCE和∠POC的大小,再根據(jù)三角形外角等于不相鄰兩內(nèi)角和即可解題.
解答 解:(1)∵A(0,1),B(4,1),
∴AB∥CO,
∴∠OAB=90°,
∵AC平分∠OAB.
∴∠OAC=45°,
∴∠OCA=90°-45°=45°,
∴∠OAC=∠OCA;
(2)∵∠POC=$\frac{1}{3}$∠AOC,∴∠POC=$\frac{1}{3}$×90°=30°,
∵∠PCE=$\frac{1}{3}$∠ACE,∴∠PCE=$\frac{1}{3}$(180°-45°)=45°,
∵∠P+∠POC=∠PCE,
∴∠P=∠PCE-∠POC=15°;
(3)∵∠POC=$\frac{1}{n}$∠AOC,∴∠POC=$\frac{1}{n}$×90°=$\frac{90}{n}$°,
∵∠PCE=$\frac{1}{n}$∠ACE,∴∠PCE=$\frac{1}{n}$(180°-45°)=$\frac{135}{n}$°,
∵∠P+∠POC=∠PCE,
∴∠P=∠PCE-∠POC=$\frac{45}{n}$°.
點(diǎn)評(píng) 本題考查了三角形內(nèi)角和為180°的性質(zhì),考查了角平分線平分角的性質(zhì),考查了三角形外角等于不相鄰兩內(nèi)角和的性質(zhì),本題中求∠PCE和∠POC的大小是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com