欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.【提出問題】
(1)已知:菱形ABCD的變長(zhǎng)為4,∠ADC=60°,△PEF為等邊三角形,當(dāng)點(diǎn)P與點(diǎn)D重合,點(diǎn)E在對(duì)角線AC上時(shí)(如圖1所示),求AE+AF的值;
【類比探究】
(2)在上面的問題中,如果把點(diǎn)P沿DA方向移動(dòng),使PD=1,其余條件不變(如圖2),你能發(fā)現(xiàn)AE+AF的值是多少?請(qǐng)直接寫出你的結(jié)論;
【拓展遷移】
(3)在原問題中,當(dāng)點(diǎn)P在線段DA的延長(zhǎng)線上,點(diǎn)E在CA的延長(zhǎng)線上時(shí)(如圖3),設(shè)AP=m,則線段AE、AF的長(zhǎng)與m有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.

分析 (1)首先判斷出△ACD是等邊三角形,即可判斷出AC=AD=4;然后根據(jù)全等三角形判定的方法,判斷出△APF≌△CPE,即可判斷出CE=AF,據(jù)此求出AE+AF的值是多少即可.
(2)首先取AC上的點(diǎn)G,使得CG=PD=1,判斷出GP∥CD,即可判斷出∠APF=∠GPE;然后根據(jù)全等三角形判定的方法,判斷出△APF≌△GPE,即可判斷出GE=AF,據(jù)此求出AE+AF的值是多少即可.
(3)首先作PH∥CD交CE于點(diǎn)H,判斷出△AHP∽△ACD,即可判斷出△AHP是等邊三角形;然后根據(jù)全等三角形判定的方法,判斷出△APF≌△HPE,即可判斷出AF=HE,再根據(jù)PA=AH,可得AE=PA+AF,所以AE-AF=m,據(jù)此解答即可.

解答 解:(1)如圖1,,
∵四邊形ABCD是菱形,
∴PA=PC,
∵∠ADC=60°,
∴△ACD是等邊三角形,
∴AC=AD=4,
又∵△PEF為等邊三角形,
∴∠ADC=∠EPF=60°,
∴∠APF=∠CPE,
在△APF和△CPE中,
$\left\{\begin{array}{l}{AP=CP}\\{∠APF=∠CPE}\\{PF=PE}\end{array}\right.$
∴△APF≌△CPE,
∴CE=AF,
∴AE+AF=AE+CE=AC=4,
即AE+AF的值是4.

(2)如圖2,點(diǎn)G是AC上的一點(diǎn),且滿足CG=PD=1,,
∵CG=PD,AC=AD,
∴AG=AP,
∴$\frac{AG}{CG}=\frac{AP}{PD}$,
∴GP∥CD,
∴∠GPA=∠CDA=60°,
又∵EPF=60°,
∴∠APF=∠GPE,
在△APF和△GPE中,
$\left\{\begin{array}{l}{AP=GP}\\{∠APF=∠GPE}\\{FP=EP}\end{array}\right.$
∴△APF≌△GPE,
∴GE=AF,
∴AE+AF=AE+GE=AG=AC-CG=4-1=3,
即AE+AF的值是3.


(3)如圖3,作PH∥CD交CE于點(diǎn)H,,
由(1),可得△ACD是等邊三角形,
∵PH∥CD,
∴△AHP∽△ACD,
∴△AHP是等邊三角形,
∴PA=PH,∠APH=∠EPF=60°,
∴∠FPA=∠EPH,
在△APF和△HPE中,
$\left\{\begin{array}{l}{PA=PH}\\{∠FPA=∠EPH}\\{PF=PE}\end{array}\right.$
∴△APF≌△HPE,
∴AF=HE,
又∵PA=AH,
∴AE=PA+AF,
∴AE-AF=m.

點(diǎn)評(píng) (1)此題主要考查了四邊形綜合題,考查了分析推理能力,考查了分類討論思想的應(yīng)用,考查了數(shù)形結(jié)合思想的應(yīng)用,要熟練掌握.
(2)此題還考查了全等三角形的判定和性質(zhì)的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:①判定定理1:SSS--三條邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等.②判定定理2:SAS--兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等.③判定定理3:ASA--兩角及其夾邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等.④判定定理4:AAS--兩角及其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.⑤判定定理5:HL--斜邊與直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.
(3)此題還考查了三角形相似的判定和性質(zhì)的應(yīng)用,以及菱形的性質(zhì)和應(yīng)用,要熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在三角形ABC中,AB=AC,∠A=36°,AB的垂直平分線MN交AB于點(diǎn)M,交AC于點(diǎn)N,下面結(jié)論:①BN平分∠ABC;②△BCN是等腰三角形;③△BMN≌△BCN;④△BCN的周長(zhǎng)等于AB+BC,其中正確的結(jié)論是( 。
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知:線段a,b.求作:△ABC,使AB=AC=b,且BC邊上的高AD=a(不寫作法,只保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.下面是某同學(xué)給出一種證法,請(qǐng)你將解答中缺少的條件、結(jié)論或證明理由補(bǔ)充完整:
證明:∵CD與EF相交于點(diǎn)H(已知) 
∴∠1=∠2(對(duì)頂角相等) 
∵AB∥CD(已知)
∴∠2=∠EGB(兩直線平行,同位角相等)
∵GN是∠EGB的平分線,(已知)
∴∠4=$\frac{1}{2}$∠BGE (角平分線定義)
∵∠1=∠2,∠2=∠EGB(已證)
∴∠1=∠EGB(等量代換)
∵$∠4=\frac{1}{2}$∠EGB(已證)  
∴∠4=$\frac{1}{2}$∠1(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算:$\sqrt{16}÷\sqrt{2}-\sqrt{3}×(2-\sqrt{3})-\frac{3}{2}\sqrt{(-2)^{2}}$-$|1-\sqrt{2}|+\sqrt{\frac{1}{2}}-(1-\sqrt{3})^{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.某商場(chǎng)經(jīng)銷甲、乙兩種商品,甲種商品每件進(jìn)價(jià)15元,售價(jià)20元;乙種商品每件進(jìn)價(jià)35元,售價(jià)45元.
(1)若該商場(chǎng)同時(shí)購進(jìn)甲、乙兩種商品共100件,恰好用去2700元,求購進(jìn)甲、乙兩種商品各多少件?
(2)該商場(chǎng)為使甲、乙兩種商品共100件的總利潤(rùn)不少于750元,且不超過760元,請(qǐng)你通過計(jì)算求出該商場(chǎng)所有的進(jìn)貨方案;
(3)在“五•一”黃金周期間,該商場(chǎng)對(duì)甲、乙兩種商品進(jìn)行如下優(yōu)惠促銷活動(dòng):
打折前一次性購物總金額優(yōu)惠措施
不超過300元不優(yōu)惠
超過300元且不超過400元售價(jià)打九折
超過400元售價(jià)打八折
按上述優(yōu)惠條件,若貝貝第一天只購買甲種商品一次性付款200元,第二天只購買乙種商品打折后一次性付款324元,那么這兩天他在該商場(chǎng)購買甲、乙兩種商品各多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.在?ABCD中,∠ABC的平分線交直線AD于點(diǎn)E,且AE=5,ED=2,則?ABCD的周長(zhǎng)是24或16.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算:($\sqrt{2}$+$\sqrt{3}$+$\sqrt{5}$)(3$\sqrt{2}$+2$\sqrt{3}$-$\sqrt{30}$)+2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.解下列分式方程
(1)$\frac{2}{x-1}$-1=$\frac{x+1}{x-1}$                      
(2)$\frac{x+2}{x-2}$=$\frac{x}{x+1}$
(3)$\frac{3x-5}{x-1}$-$\frac{2x-5}{x-2}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案