分析 (1)由題目的已知條件可得EG是△BDC的中位線,所以EG∥BD,由此可得∠CGE=∠BDC,再根據(jù)三角形外角和定理即可證明∠CGE=∠ACD+∠CAD;
(2)連接FG,易證△FGE是等腰三角形,所以∠GFE=∠GEF,再根據(jù)平行線的性質(zhì)以及對頂角相等可證明∠H=∠AFE,進而可得:AH=AF,
解答 證明(1)∵E,G分別是BC,CD的中點,
∴EG是△BDC的中位線,
∴EG∥BD,
∴∠CGE=∠BDC,![]()
∵∠BDC=∠ACD+∠CAD,
∴∠CGE=∠ACD+∠CAD;
(2)連接FG,
∵E,F(xiàn),G分別是BC,AD,CD的中點,
∴EG=$\frac{1}{2}$BD,F(xiàn)G=$\frac{1}{2}$AC,
∵BD=AC,
∴GE=GF,
∴∠GFE=∠GEF,
∵FG∥HC,
∴∠GFE=∠H,
∵∠GEF=∠BFE=∠AFH,
∴∠H=∠AFE,
∴AH=AF.
點評 本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質(zhì)與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應(yīng)用.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | B. | $\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$ | C. | 2$\sqrt{2}$+3$\sqrt{3}$=5$\sqrt{5}$ | D. | $\sqrt{(-4)^{2}}$=4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 9 | B. | 1 | C. | 3 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2cm | B. | 3cm | C. | 4cm | D. | 6cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 3 | B. | 7 | C. | -4 | D. | -8 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com