5.正△ABC的邊長為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A―DC―B。
(1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求二面角E―DF―C的余弦值;
參 考 答 案:
1解:(Ⅰ)∵AD=2AB=2,E是AD的中點(diǎn),
∴△BAE,△CDE是等腰直角三角形,
易知,∠BEC=90°,即BE⊥EC
又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,
∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′
(Ⅱ)法一:設(shè)M是線段EC的中點(diǎn),過M作MF⊥BC
垂足為F,連接D′M,D′F,則D′M⊥EC
∵平面D′EC⊥平面BEC,∴D′M⊥平面EBC,
∴MF是D′F在平面BEC上的射影,
由三垂線定理得:D′F⊥BC,
∴∠D′FM是二面D′―BC―E的平面角.
在Rt△D′MF中,。
∴,
即二面角D′―BC―E的正切值為.
法二:如圖,以EB,EC為x軸,y軸,過E垂直于平面BEC的射線為z軸,建立空間直角坐標(biāo)系,則
設(shè)平面BEC的法向量為;平面D′BC的法向量為
由.取
∴。
∴二面角D′―BC―E的的正切值為.
4.四棱椎P―ABCD中,底面ABCD是矩形,為正三角形,
平面PB中點(diǎn).
(1)求證:PB∥ 平面AEC;
(2)求二面角E―AC―D的大小.
(Ⅰ)若D為AA1中點(diǎn),求證:平面B1CD平面B1C1D;
(Ⅱ)若二面角B1―DC―C1的大小為60°,求AD的長.
(Ⅰ)求證:A1A⊥BC;
(Ⅱ)當(dāng)側(cè)棱AA1和底面成45°角時,
求二面角A1―AC―B的大小余弦值;
(Ⅲ)若D為側(cè)棱A1A上一點(diǎn),當(dāng)為何值時,BD⊥A1C1.
1、如圖所示,在矩形中,,點(diǎn)是的中點(diǎn),將沿折起到的位置,使二面角是直二面角.
(Ⅰ)證明:;
(Ⅱ)求二面角的正切值.
3、角度:包括線線(主要是異面直線)所成的角,線面所成的角,面面所成的角;4、求距離或體積;
高考中的立體幾何題的解法通常一題多解,同一試題的解題途徑和方法中常常潛藏著極其巧妙的解法,尤其是空間向量這一工具性的作用體現(xiàn)的更為明顯。因此,這就要求考生通過“周密分析、明細(xì)推理、準(zhǔn)確計算、猜測探求”等具有創(chuàng)造性思維活動來選擇其最佳解法以節(jié)約做題時間,從而適應(yīng)最新高考要求。
熟練掌握該部分的判定定理和性質(zhì)定理是做好立體幾何的重中之重。同時平時要注意培養(yǎng)自己的空間想象能力、邏輯思維能力和運(yùn)算能力.
2、垂直:包括線線垂直,線面垂直,面面垂直;
1、平行:包括線線平行,線面平行,面面平行;
3、(08遼寧卷)(本小題滿分12分)
如圖,在棱長為1的正方體中,AP=BQ=b(0<b<1),截面PQEF∥,截面PQGH∥.
(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,
并求出這個值;
(Ⅲ)若與平面PQEF所成的角為,求與平
面PQGH所成角的正弦值.
本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識,考查空間想象能力與邏輯思維能力。滿分12分.
解法一:
,,,
所以,,
所以平面.
所以平面和平面互相垂直.??????? 4分
(Ⅱ)證明:由(Ⅰ)知
,又截面PQEF和截面PQGH都是矩形,且PQ=1,所以截面PQEF和截面PQGH面積之和是
,是定值.???????????????????? 8分
(III)解:連結(jié)BC′交EQ于點(diǎn)M.
因?yàn),?/p>
所以平面和平面PQGH互相平行,因此與平面PQGH所成角與與平面所成角相等.
與(Ⅰ)同理可證EQ⊥平面PQGH,可知EM⊥平面,因此EM與的比值就是所求的正弦值.
設(shè)交PF于點(diǎn)N,連結(jié)EN,由知
.
因?yàn)椤推矫鍼QEF,又已知與平面PQEF成角,
所以,即,
解得,可知E為BC中點(diǎn).
所以EM=,又,
故與平面PQCH所成角的正弦值為.??????????????? 12分
解法二:
,,,,
,,,
,,.
(Ⅰ)證明:在所建立的坐標(biāo)系中,可得
,
,
.
因?yàn),所以是平面PQEF的法向量.
因?yàn)椋允瞧矫鍼QGH的法向量.
因?yàn),所以?/p>
所以平面PQEF和平面PQGH互相垂直.????????????????????? 4分
(Ⅱ)證明:因?yàn)椋,又,所以PQEF為矩形,同理PQGH為矩形.
在所建立的坐標(biāo)系中可求得,,
所以,又,
所以截面PQEF和截面PQGH面積之和為,是定值.?????????????? 8分
(Ⅲ)解:由已知得與成角,又可得
,
即,解得.
所以,又,所以與平面PQGH所成角的正弦值為
.????????????????????? 12分
立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考的熱點(diǎn)內(nèi)容。該部分新增加了三視圖,對三視圖的考查應(yīng)引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺)為背景,考查幾何元素之間的位置關(guān)系。另外還應(yīng)注意非標(biāo)準(zhǔn)圖形的識別、三視圖的運(yùn)用、圖形的翻折、求體積時的割補(bǔ)思想等,以及把運(yùn)動的思想引進(jìn)立體幾何。最近幾年綜合分析全國及各省高考真題,立體幾何開放題是高考命題的一個重要方向,開放題更能全面的考查學(xué)生綜合分析問題的能力?疾閮(nèi)容一般有以下幾塊內(nèi)容:
2、(08福建卷)(本小題滿分12分)
如圖,在四棱錐P-ABCD中,則面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PD與CD所成角的大;
(Ⅲ)線段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為?若存在,求出 的值;若不存在,請說明理由.
本小題主要考查直線與平面的位置關(guān)系、異面直線所成角、點(diǎn)到平面的距離等基本知識,考查空間想象能力、邏輯思維能力和運(yùn)算能力.滿分12分.
解法一:(Ⅰ)證明:在△PAD中PA=PD,O為AD中點(diǎn),所以PO⊥AD,
又側(cè)面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)連結(jié)BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四邊形OBCD是平行四邊形,
所以O(shè)B∥DC.
由(Ⅰ)知,PO⊥OB,∠PBO為銳角,
所以∠PBO是異面直線PB與CD所成的角.
因?yàn)锳D=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以O(shè)B=,
在Rt△POA中,因?yàn)锳P=,AO=1,所以O(shè)P=1,
在Rt△PBO中,tan∠PBO=
所以異面直線PB與CD所成的角是.
(Ⅲ)假設(shè)存在點(diǎn)Q,使得它到平面PCD的距離為.
設(shè)QD=x,則,由(Ⅱ)得CD=OB=,
在Rt△POC中,
所以PC=CD=DP,
由Vp-DQC=VQ-PCD,得2,所以存在點(diǎn)Q滿足題意,此時.
解法二:
(Ⅰ)同解法一.
(Ⅱ)以O(shè)為坐標(biāo)原點(diǎn),的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系O-xyz,依題意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以異面直線PB與CD所成的角是arccos,
(Ⅲ)假設(shè)存在點(diǎn)Q,使得它到平面PCD的距離為,
由(Ⅱ)知
設(shè)平面PCD的法向量為n=(x0,y0,z0).
則所以即,
取x0=1,得平面PCD的一個法向量為n=(1,1,1).
設(shè)由,得解y=-或y=(舍去),
此時,所以存在點(diǎn)Q滿足題意,此時.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com