2.能正確畫出二元一次不等式(組)表示的平面區(qū)域,知道線性規(guī)劃的意義,知道線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等基本概念,能正確地利用圖解法解決線性規(guī)劃問題,并用之解決簡(jiǎn)單的實(shí)際問題,了解線性規(guī)劃方法在數(shù)學(xué)方面的應(yīng)用;會(huì)用線性規(guī)劃方法解決一些實(shí)際問題.
高考中解析幾何試題一般共有4題(2個(gè)選擇題, 1個(gè)填空題, 1個(gè)解答題),共計(jì)30分左右,考查的知識(shí)點(diǎn)約為20個(gè)左右。 其命題一般緊扣課本,突出重點(diǎn),全面考查。選擇題和填空題考查直線、圓、圓錐曲線、參數(shù)方程和極坐標(biāo)系中的基礎(chǔ)知識(shí)。解答題重點(diǎn)考查圓錐曲線中的重要知識(shí)點(diǎn),通過知識(shí)的重組與鏈接,使知識(shí)形成網(wǎng)絡(luò),著重考查直線與圓錐曲線的位置關(guān)系,求解有時(shí)還要用到平幾的基本知識(shí)和向量的基本方法,這一點(diǎn)值得強(qiáng)化。
1. 能正確導(dǎo)出由一點(diǎn)和斜率確定的直線的點(diǎn)斜式方程;從直線的點(diǎn)斜式方程出發(fā)推導(dǎo)出直線方程的其他形式,斜截式、兩點(diǎn)式、截距式;能根據(jù)已知條件,熟練地選擇恰當(dāng)?shù)姆匠绦问綄懗鲋本的方程,熟練地進(jìn)行直線方程的不同形式之間的轉(zhuǎn)化,能利用直線的方程來研究與直線有關(guān)的問題了.
20.(14分)已求函數(shù)
的單調(diào)區(qū)間.
19.(14分)如圖,A,B,C為函數(shù)
的圖象
上的三點(diǎn),它們的橫坐標(biāo)分別是t,
t+2, t+4(t
1).
(1)設(shè)
ABC的面積為S 求S=f (t) ;
(2)判斷函數(shù)S=f (t)的單調(diào)性;
(3) 求S=f (t)的最大值.
18.現(xiàn)有某種細(xì)胞100個(gè),其中有占總數(shù)
的細(xì)胞每小時(shí)分裂一次,即由1個(gè)細(xì)胞分裂成2個(gè)細(xì)胞,按這種規(guī)律發(fā)展下去,經(jīng)過多少小時(shí),細(xì)胞總數(shù)可以超過
個(gè)?(參考數(shù)據(jù):
).
17.(12分)設(shè)函數(shù)
.
(1)確定函數(shù)f (x)的定義域;
(2)判斷函數(shù)f (x)的奇偶性;
(3)證明函數(shù)f (x)在其定義域上是單調(diào)增函數(shù);
(4)求函數(shù)f(x)的反函數(shù).
16.(12分)設(shè)x,y,z∈R+,且3x=4y=6z.
(1)求證:
; (2)比較3x,4y,6z的大小.
15.(12分)已知函數(shù)
.
(1)求函數(shù)f (x)的定義域;(2)求函數(shù)f (x)的值域.
14.函數(shù)y=
的單調(diào)遞增區(qū)間是
.
13.將函數(shù)
的圖象向左平移一個(gè)單位,得到圖象C1,再將C1向上平移一個(gè)單位得到圖象C2,作出C2關(guān)于直線y=x對(duì)稱的圖象C3,則C3的解析式為
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com