勻速直線運動:兩種方法(公式法與圖象法)
勻變速直線運動:
,幾個推論、比值、兩個中點速度和一個v-t圖象。
特例1:自由落體運動為初速度為0的勻加速直線運動,a=g;機械能守恒。
特例2:豎直上拋運動為有一個豎直向上的初速度v0;運動過程中只受重力作用,加速度為豎直向下的重力加速度g。特點:時間對稱(
)、速率對稱(
);機械能守恒。
4. 地球同步衛(wèi)星的線速度:地球同步衛(wèi)星的線速度大小為
,為定值,繞行方向與地球自轉方向相同。
[誤區(qū)點撥]
天體運動問題:人造衛(wèi)星的軌道半徑與中心天體半徑的區(qū)別;人造衛(wèi)星的發(fā)射速度和運行速度;衛(wèi)星的穩(wěn)定運行和變軌運動;赤道上的物體與近地衛(wèi)星的區(qū)別;衛(wèi)星與同步衛(wèi)星的區(qū)別。
人造地球衛(wèi)星的發(fā)射速度是指把衛(wèi)星從地球上發(fā)射出去的速度,速度越大,發(fā)射得越遠,發(fā)射的最小速度,恰好是在地球表面附近的環(huán)繞速度,但人造地球衛(wèi)星發(fā)射過程中要克服地球引力做功,增大勢能,所以將衛(wèi)星發(fā)射到離地球越遠的軌道上,在地面上所需要的發(fā)射速度就越大。
混淆連續(xù)物和衛(wèi)星群:連續(xù)物是指和天體連在一起的物體,其角速度和天體相同,而對衛(wèi)星來講,其線速度
。
雙星系統(tǒng)中的向心力中的距離與圓周運動中的距離的差別。
[模型演練]
(2005年大聯(lián)考)經(jīng)過用天文望遠鏡長期觀測,人們在宇宙中已經(jīng)發(fā)現(xiàn)了許多雙星系統(tǒng),通過對它們的研究,使我們對宇宙中物質的存在形式和分布情況有了較深刻的認識,雙星系統(tǒng)由兩個星體組成,其中每個星體的線度都遠小于兩星體之間的距離,一般雙星系統(tǒng)距離其他星體很遠,可以當作孤立系統(tǒng)來處理。
現(xiàn)根據(jù)對某一雙星系統(tǒng)的光度學測量確定;該雙星系統(tǒng)中每個星體的質量都是M,兩者相距L,它們正圍繞兩者連線的中點做圓周運動。
(1)試計算該雙星系統(tǒng)的運動周期
;
(2)若實驗中觀測到的運動周期為
,且
。
為了理解
與
的不同,目前有一種流行的理論認為,在宇宙中可能存在一種望遠鏡觀測不到的暗物質。作為一種簡化模型,我們假定在以這兩個星體連線為直徑的球體內均勻分布這種暗物質。若不考慮其他暗物質的影響,請根據(jù)這一模型和上述觀測結果確定該星系間這種暗物質的密度。
答案:(1)雙星均繞它們連線的中點做圓周運動,設運動的速率為v,得:
![]()
(2)根據(jù)觀測結果,星體的運動周期:
![]()
這種差異是由雙星系統(tǒng)(類似一個球)內均勻分布的暗物質引起的,均勻分布雙星系統(tǒng)內的暗物質對雙星系統(tǒng)的作用,與一個質點(質點的質量等于球內暗物質的總質量
且位于中點O處)的作用相同?紤]暗物質作用后雙星的速度即為觀察到的速度
,則有:
![]()
因為周長一定時,周期和速度成反比,得:
![]()
有以上各式得![]()
設所求暗物質的密度為
,則有
![]()
3. 地球同步衛(wèi)星的軌道半徑:據(jù)牛頓第二定律有
與地球自轉角速度相同,所以地球同步衛(wèi)星的軌道半徑為
。其離地面高度也是一定的,距地面高度
處。
2. 地球同步衛(wèi)星的周期:地球同步衛(wèi)星的運轉周期與地球自轉周期相同。
1. 地球同步衛(wèi)星的軌道平面:非同步人造地球衛(wèi)星其軌道平面可與地軸有任意夾角,而同步衛(wèi)星一定位于赤道的正上方,不可能在與赤道平行的其他平面上。
運動物體能量等于其動能與勢能之和,即
。
從離地球較遠軌道向離地球較近軌道運動,萬有引力做正功,勢能減少,動能增大,總能量減少
從離氫原子較遠軌道向離氫原子較近軌道運動,庫侖力做正功,電勢能減少,動能增大,總能量減少。
推論:衛(wèi)星(或電子)的軌道半徑與衛(wèi)星(或電子)在該軌道上的能量的乘積不變。
由于描述運動規(guī)律的各物理量都是軌道半徑r的函數(shù),故各個物理量之間的關系都可以通過r這個橋梁來相互轉化,一個量變化,其他各量都隨之變化。
對衛(wèi)星而言,
,將v與r的關系式代入,得
。
對于電子,同樣可得到這個關系式
。
該式即為開普勒第三定律,解題時可以直接使用。
衛(wèi)星運動的動能為
。
氫原子核外電子運動的動能為:
![]()
可見,在這兩類現(xiàn)象中,衛(wèi)星與電子的動能都與軌道半徑成反比。
設地球的質量為M,衛(wèi)星質量為m,衛(wèi)星在半徑為r的軌道上運行,其線速度為v,可知
,從而
。
設質量為
、帶電量為e的電子在第n條可能軌道上運動,其線速度大小為v,則有
,從而
。
可見,衛(wèi)星或電子的線速度都與軌道半徑的平方根成反比。
2. (2006年湖南湘鄉(xiāng))如圖6所示,在動力小車上固定一直角硬桿ABC,分別系在水平直桿AB兩端的輕彈簧和細線將小球P懸吊起來。輕彈簧的勁度系數(shù)為k,小球P的質量為m,當小車沿水平地面以加速度a向右運動而達到穩(wěn)定狀態(tài)時,輕彈簧保持豎直,而細線與桿的豎直部分的夾角為
,試求此時彈簧的形變量。
![]()
圖6
答案:
,
,![]()
,討論:
①若
則彈簧伸長![]()
②若
則彈簧伸長![]()
③若
則彈簧壓縮![]()
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com