欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  431974  431982  431988  431992  431998  432000  432004  432010  432012  432018  432024  432028  432030  432034  432040  432042  432048  432052  432054  432058  432060  432064  432066  432068  432069  432070  432072  432073  432074  432076  432078  432082  432084  432088  432090  432094  432100  432102  432108  432112  432114  432118  432124  432130  432132  432138  432142  432144  432150  432154  432160  432168  447090 

2.涉及弦的中點問題,除利用韋達定理外,也可以運用“點差法”,但必須以直線與圓錐曲線相交為前提,否則不宜用此法.

試題詳情

1.解決直線和圓錐曲線的位置關(guān)系問題時,一般是消元得到一元二次方程,再討論二次項的系數(shù)和判別式Δ,有時借助圖形的幾何性質(zhì)更為方便.

試題詳情

[例1]求過點(0,2)的直線被橢圓x2+2y2=2所截弦的中點的軌跡方程.

解:設(shè)直線方程為y=kx+2,

把它代入x2+2y2=2,

整理得(2k2+1)x2+8kx+6=0.

要使直線和橢圓有兩個不同交點,則Δ>0,即k<-k

設(shè)直線與橢圓兩個交點為A(x1,y1)、B(x2y2),中點坐標為C(xy),則

x,

y= +2=

(k<-k),
 
從參數(shù)方程
 
  x=,

y= 

消去kx2+2(y-1)2=2,

且|x|<,0<y

[例2](2005江西文)

如圖,M是拋物線上y2=x上的一點,動弦ME、MF分別交x軸于A、B兩點,且MA=MB

  (1)若M為定點,證明:直線EF的斜率為定值;

  (2)若M為動點,且∠EMF=90°,求△EMF的重心G的軌跡方程.

解:(1)設(shè)M(y,y0),直線ME的斜率為k(l>0)

則直線MF的斜率為-k,

所以直線EF的斜率為定值

(2)

同理可得

設(shè)重心G(x, y),則有

[例3](2006浙江)如圖,橢圓=1(ab>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=.    (Ⅰ)求橢圓方程;

(Ⅱ)設(shè)FF分別為橢圓的左、右焦點,M為線段的中點,求證:∠ATM=∠AFT

解:(I)過點的直線方程為

因為由題意得    有惟一解,

有惟一解,

所以

  (),

故 

又因為 即 

所以 

從而得 

故所求的橢圓方程為  

(II)由(I)得 

從而

解得所以

因為

因此

[例4]已知橢圓C+=1(ab>0),兩個焦點分別為F1F2,斜率為k的直線l過右焦點F2且與橢圓交于A、B兩點,設(shè)ly軸交點為P,線段PF2的中點恰為B

(1)若|k|≤,求橢圓C的離心率的取值范圍;

(2)若k=,A、B到右準線距離之和為,求橢圓C的方程.

解:(1)設(shè)右焦點F2(c,0),則ly=k(xc).

x=0,則y=-ck,∴P(0,-ck).

BF2P的中點,∴B(,-).

B在橢圓上,∴+=1.

k2·=(-1)(4-e2)

+e2-5.

∵|k|≤,∴+e2-5≤

∴(5e2-4)(e2-5)≤0.

e2<1.∴e<1.

(2)k,∴e.∴

a2c2b2c2.橢圓方程為+=1,即x2+5y2c2

直線l方程為y=(xc),

B(,-c),右準線為x=c

設(shè)A(x0,y0),則

(cx0)+(c)=,

x0=2c,y0(c).

A在橢圓上,

∴(2c)2+5[(c)]2c2

解之得c=2或c(不合題意,舍去).

∴橢圓方程為x2+5y2=5,即+y2=1.

[研討.欣賞](2006山東)雙曲線C與橢圓有相同的焦點,直線C的一條漸近線。

(1)求雙曲線C的方程;

(2)過點的直線,交雙曲線CA、B兩點,交軸于Q點(Q點與C的頂點不重合),當,且時,求點的坐標。

解:(Ⅰ)設(shè)雙曲線方程為

   由橢圓 求得兩焦點為

對于雙曲線,又為雙曲線的一條漸近線

  解得 ,

雙曲線的方程為

(Ⅱ)解法一:

由題意知直線的斜率存在且不等于零。

設(shè)的方程:,

在雙曲線上,

同理有:

則直線過頂點,不合題意.

是二次方程的兩根.

,

此時

所求的坐標為

解法二:

由題意知直線的斜率存在且不等于零

設(shè)的方程,,則

,

的比為

由定比分點坐標公式得

下同解法一

解法三:

由題意知直線的斜率存在且不等于零

設(shè)的方程:,則

,

,,

,

代入

,否則與漸近線平行。

。

解法四:

由題意知直線l得斜率k存在且不等于零,設(shè)的方程:

,

。

同理   

即   。                   (*)

又  

消去y

時,則直線l與雙曲線得漸近線平行,不合題意,。

由韋達定理有:

代入(*)式得  

所求Q點的坐標為。

試題詳情

6.設(shè)P(x0,y0)則d1·d2=·==

試題詳情

6.雙曲線=1(a>0,b>0)上任意一點到它的兩條漸近線的距離之積等于________.

簡答:1-3。CAC; 4. 32;  5. 作出函數(shù)的圖象,如圖所示:

    

所以,;

試題詳情

5.(2006上海) 若曲線=||+1與直線+沒有公共點,則、分別應(yīng)滿足的條件是           

試題詳情

4.(2006山東)已知拋物線,過點的直線與拋物線相交于兩點,則的最小值是       。

試題詳情

3.(2006福建)已知雙曲線的右焦點為F,若過點F且傾斜角為的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(  )

    (A)     (B)    (C)  (D)

試題詳情

2.(2006全國Ⅰ)拋物線上的點到直線距離的最小值是  (  )

A          B        C         D

試題詳情

1.(2004全國I)設(shè)拋物線y2=8x的準線與x軸交于點Q,若過點Q的直線l與拋物線有公共點,則直線l 的斜率的取值范圍是   (   )

    A.[-,]     B.[-2,2]       C.[-1,1]       D.[-4,4]

試題詳情


同步練習冊答案