(三)德育滲透點
滲透數(shù)學(xué)知識來源于實踐又反過來作用于實踐的觀點;培養(yǎng)學(xué)生的學(xué)習(xí)興趣及良好的學(xué)習(xí)習(xí)慣.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生分析、比較、綜合、概括邏輯思維能力;培養(yǎng)學(xué)生分析問題、解決問題的能力;使學(xué)生逐步形成用數(shù)學(xué)的意識.
(一)知識教學(xué)點
歸納綜合第一大節(jié)的內(nèi)容,使之系統(tǒng)化、網(wǎng)絡(luò)化,并使學(xué)生綜合運(yùn)用這些知識,解決簡單問題.
|
14.1 正弦和余弦(五) 例8 例9 例10 ----------------- ------------------ ------------------- ---------------- ----------------- - -------------------- |
正弦和余弦(六)
教材復(fù)習(xí)題十四A組3、4,要求學(xué)生只查正、余弦。
(四)、總結(jié)、擴(kuò)展
本節(jié)課我們重點學(xué)習(xí)了已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個銳角的大小,這也是本課難點,同學(xué)們要會依據(jù)正弦值和余弦值隨角度變化規(guī)律(角度變化范圍0°-90°)查“正弦和余弦表”.
(三)重點、難點的學(xué)習(xí)與目標(biāo)完成過程.
例8 已知sinA=0.2974,求銳角A.
學(xué)生通過上節(jié)課已知銳角查其正弦值和余弦值的經(jīng)驗,完全能獨立查得銳角A,但教師應(yīng)請同學(xué)講解查的過程:從正弦表中找出0.2974,由這個數(shù)所在行向左查得17°,由同一數(shù)所在列向上查得18′,即0.2974=sin17°18′,以培養(yǎng)學(xué)生語言表達(dá)能力.
解:查表得sin17°18′=0.2974,所以
銳角A=17°18′.
例9 已知cosA=0.7857,求銳角A.
分析:學(xué)生在表中找不到0.7857,這時部分學(xué)生可能束手無策,但有上節(jié)課查表的經(jīng)驗,少數(shù)思維較活躍的學(xué)生可能會想出辦法.這時教師最好讓學(xué)生討論,在探討中尋求辦法.這對解決本題會有好處,使學(xué)生印象更深,理解更透徹.
若條件許可,應(yīng)在討論后請一名學(xué)生講解查表過程:在余弦表中查不到0.7857.但能找到同它最接近的數(shù)0.7859,由這個數(shù)所在行向右查得38°,由同一個數(shù)向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,這說明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002對應(yīng)的角度是1′,所以∠A=38°12′+1′=38°13′.
解:查表得cos38°12′=0.7859,所以:
0.7859=cos38°12′.
值減0.0002角度增1′
0.7857=cos38°13′,
即 銳角A=38°13′.
例10 已知cosB=0.4511,求銳角B.
例10與例9相比較,只是出現(xiàn)余差(本例中的0.0002)與修正值不一致.教師只要講清如何使用修正值(用最接近的值),以使誤差最小即可,其余部分學(xué)生在例9的基礎(chǔ)上,可以獨立完成.
解:0.4509=cos63°12′
值增0.0003角度減1′
0.4512=cos63°11′
∴銳角B=63°11′
為了對例題加以鞏固,教師在此應(yīng)設(shè)計練習(xí)題,教材P.15中2、3.
2.已知下列正弦值或余弦值,求銳角A或B:
(1)sinA=0.7083,sinB=0.9371,
sinA=0.3526,sinB=0.5688;
(2)cosA=0.8290,cosB=0.7611,
cosA=0.2996,cosB=0.9931.
此題是配合例題而設(shè)置的,要求學(xué)生能快速準(zhǔn)確得到答案.
(1)45°6′,69°34′,20°39′,34°40′;
(2)34°0′,40°26′,72°34′,6°44′.
3.查表求sin57°與cos33°,所得的值有什么關(guān)系?
此題是讓學(xué)生通過查表進(jìn)一步印證關(guān)系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).
(二)整體感知
已知一個銳角,我們可用“正弦和余弦表”查出這個角的正弦值或余弦值.反過來,已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個角的大。驗閷W(xué)生有查“平方表”、“立方表”等經(jīng)驗,對這一點必深信無疑.而且通過逆向思維,可能很快會掌握已知函數(shù)值求角的方法.
(一)明確目標(biāo)
1.銳角的正弦值與余弦值隨角度變化的規(guī)律是什么?
這一規(guī)律也是本課查表的依據(jù),因此課前還得引導(dǎo)學(xué)生回憶.
答:當(dāng)角度在0°-90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小);當(dāng)角度在0°-90°間變化時,余弦值隨角度的增大(或減小)而減小(或增大).
2.若cos21°30′=0.9304,且表中同一行的修正值是
則cos21°31′=______,
cos21°28′=______.
3.不查表,比較大。
(1)sin20°______sin20°15′;
(2)cos51°______cos50°10′;
(3)sin21°______cos68°.
學(xué)生在回答2題時極易出錯,教師一定要引導(dǎo)學(xué)生敘述思考過程,然后得出答案.
3題的設(shè)計主要是考察學(xué)生對函數(shù)值隨角度的變化規(guī)律的理解,同時培養(yǎng)學(xué)生估算.
3.疑點:由于余弦是減函數(shù),查表時“值增角減,值減角增”學(xué)生常常出錯.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com