(三)、德育滲透點(diǎn)
培養(yǎng)學(xué)生用數(shù)學(xué)的意識,滲透理論聯(lián)系實(shí)際的觀點(diǎn).
(二)、能力訓(xùn)練點(diǎn)
逐步培養(yǎng)分析問題、解決問題的能力.
(一)、知識教學(xué)點(diǎn)
使學(xué)生了解仰角、俯角的概念,使學(xué)生根據(jù)直角三角形的知識解決實(shí)際問題.
|
14.4 解直角三角形 一、概念 二、例題 -------- ------ ------ -------- ------ ------ -------- ------ ------ |
應(yīng)用舉例(一)
.
(四)總結(jié)與擴(kuò)展
1.請學(xué)生小結(jié):在直角三角形中,除直角外還有五個(gè)元素,知道兩個(gè)元素(至少有一個(gè)是邊),就可以求出另三個(gè)元素.![]()
2.幻燈片出示圖表,請學(xué)生完成
|
|
a |
b |
c |
A |
B |
|
1 |
√ |
√ |
|
|
|
|
2 |
√ |
|
√ |
|
|
|
3 |
√ |
b=a•cotA |
|
√ |
|
|
4 |
√ |
b=a•tanB |
|
|
√ |
|
5 |
|
√ |
√ |
|
|
|
6 |
a=b•tanA |
√ |
|
√ |
|
|
7 |
a=b•cotB |
√ |
|
|
√ |
|
8 |
a=c•sinA |
b=c•cosA |
√ |
√ |
|
|
9 |
a=c•cosB |
b=c•sinB |
√ |
|
√ |
|
10 |
不可求 |
不可求 |
不可求 |
√ |
√ |
注:上表中“√”表示已知。
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程
1.我們已掌握Rt△ABC的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個(gè)元素(至少有一個(gè)是邊)后,就可求出其余的元素.這樣的導(dǎo)語既可以使學(xué)生大概了解解直角三角形的概念,同時(shí)又陷入思考,為什么兩個(gè)已知元素中必有一條邊呢?激發(fā)了學(xué)生的學(xué)習(xí)熱情.
2.教師在學(xué)生思考后,繼續(xù)引導(dǎo)“為什么兩個(gè)已知元素中至少有一條邊?”讓全體學(xué)生的思維目標(biāo)一致,在作出準(zhǔn)確回答后,教師請學(xué)生概括什么是解直角三角形?(由直角三角形中除直角外的兩個(gè)已知元素,求出所有未知元素的過程,叫做解直角三角形).
3.例題
例 1在△ABC中,∠C為直角,∠A、∠B、∠C所對的邊分別為a、b、c,且c=287.4,∠B=42°6′,解這個(gè)三角形.
解直角三角形的方法很多,靈活多樣,學(xué)生完全可以自己解決,但例題具有示范作用.因此,此題在處理時(shí),首先,應(yīng)讓學(xué)生獨(dú)立完成,培養(yǎng)其分析問題、解決問題能力,同時(shí)滲透數(shù)形結(jié)合的思想.其次,教師組織學(xué)生比較各種方法中哪些較好,選一種板演.
解:(1)∠A=90°-∠B=90°-42°6′=47°54′,
(2)![]()
∴a=c. cosB=28.74×0.7420
≈213.3.
(3)
,
∴b=c·sinB=287.4×0.6704
≈192.7.
完成之后引導(dǎo)學(xué)生小結(jié)“已知一邊一角,如何解直角三角形?”
答:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另兩邊.計(jì)算時(shí),利用所求的量如不比原始數(shù)據(jù)簡便的話,最好用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些,也比較可靠,防止第一步錯(cuò)導(dǎo)致一錯(cuò)到底.
例 2在Rt△ABC中,a=104.0,b=20.49,解這個(gè)三角形.
在學(xué)生獨(dú)立完成之后,選出最好方法,教師板書.
(1)![]()
查表得A=78°51′;
(2)∠B=90°-78°51′=11°9′
(3)
.0
注意:例1中的b和例2中的c都可以利用勾股定理來計(jì)算,這時(shí)要查平方表和平方根表,這樣做有時(shí)會比上面用含四位有效數(shù)字的數(shù)乘(或除)以另一含四位有效數(shù)字的數(shù)要方便一些.但先后要查兩次表,并作一次加法(或減法).
4.鞏固練習(xí)
解直角三角形是解實(shí)際應(yīng)用題的基礎(chǔ),因此必須使學(xué)生熟練掌握.為此,教材配備了練習(xí)針對各種條件,使學(xué)生熟練解直角三角形,并培養(yǎng)學(xué)生運(yùn)算能力.
說明:解直角三角形計(jì)算上比較繁鎖,條件好的學(xué)校允許用計(jì)算器.但無論是否使用計(jì)算器,都必須寫出解直角三角形的整個(gè)過程.要求學(xué)生認(rèn)真對待這些題目,不要馬馬虎虎,努力防止出錯(cuò),培養(yǎng)其良好的學(xué)習(xí)習(xí)慣.
(二)整體感知
教材在繼銳角三角函數(shù)后安排解直角三角形,目的是運(yùn)用銳角三角函數(shù)知識,對其加以復(fù)習(xí)鞏固.同時(shí),本課又為以后的應(yīng)用舉例打下基礎(chǔ),因此在把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題之后,就是運(yùn)用本課--解直角三角形的知識來解決的.綜上所述,解直角三角形一課在本章中是起到承上啟下作用的重要一課.
(一)明確目標(biāo)
1.在三角形中共有幾個(gè)元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個(gè)元素間有哪些等量關(guān)系呢?
(1)邊角之間關(guān)系
![]()
![]()
如果用
表示直角三角形的一個(gè)銳角,那上述式子就可以寫成.
![]()
(2)三邊之間關(guān)系
a2 +b2 =c2 (勾股定理)
(3)銳角之間關(guān)系∠A+∠B=90°.
以上三點(diǎn)正是解直角三角形的依據(jù),通過復(fù)習(xí),使學(xué)生便于應(yīng)用.
3.疑點(diǎn):學(xué)生可能不理解在已知的兩個(gè)元素中,為什么至少有一個(gè)是邊.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com