8. 若集合$ A = \{x | -5 \leq x < 2\} $,$ B = \{x | -3 \leq x \leq 3\} $,分別求$ A \cap B $和$ A \cup B $。
答案:$ A \cap B = [-3, 2) $,$ A \cup B = [-5, 3] $
解析:在數(shù)軸上表示集合$ A $和$ B $,可得$ A \cap B = \{x | -3 \leq x < 2\} = [-3, 2) $,$ A \cup B = \{x | -5 \leq x \leq 3\} = [-5, 3] $。
10. 已知集合$ M = \{y | y = -4x + 6, x \in \mathbf{R}\} $,$ N = \{y | y = -x^2 + 1, x \in \mathbf{R}\} $,求$ M \cap N $和$ M \cup N $。
$ M \cap N = $
$(-\infty, 1]$
,$ M \cup N = $
$\mathbf{R}$
。
答案:$ M \cap N = (-\infty, 1] $,$ M \cup N = \mathbf{R} $
解析:$ M = \mathbf{R} $(一次函數(shù)值域?yàn)槿w實(shí)數(shù)),$ N = \{y | y \leq 1\} $(二次函數(shù)開口向下,最大值為1)。所以$ M \cap N = N = (-\infty, 1] $,$ M \cup N = M = \mathbf{R} $。
11. 對(duì)于任意的兩個(gè)正整數(shù)$ m$,$ n $,定義運(yùn)算$ \oplus $:當(dāng)$ m$,$ n $都為偶數(shù)或都為奇數(shù)時(shí),$ m \oplus n = \frac{m + n}{2} $;當(dāng)$ m$,$ n $為一奇一偶時(shí),$ m \oplus n = \sqrt{mn} $。設(shè)集合$ A = \{(m, n) | m \oplus n = t, m, n \in \mathbf{N}^*\} $,且$ (1, 4) \in A $。
(1) 求實(shí)數(shù)$ t $的值;
(2) 用列舉法寫出集合$ A $。
答案:(1) $ 2 $
解析:1為奇數(shù),4為偶數(shù),一奇一偶,所以$ 1 \oplus 4 = \sqrt{1 × 4} = 2 $,即$ t = 2 $。
(2) $ \{(1, 4), (4, 1), (2, 2), (3, 1), (1, 3)\} $
解析:分情況討論:
- 當(dāng)$ m $,$ n $一奇一偶時(shí),$ \sqrt{mn} = 2 $,$ mn = 4 $,正整數(shù)解為$ (1, 4) $,$ (4, 1) $。
- 當(dāng)$ m $,$ n $同奇或同偶時(shí),$ \frac{m + n}{2} = 2 $,$ m + n = 4 $,正整數(shù)解為$ (1, 3) $,$ (3, 1) $,$ (2, 2) $。所以$ A = \{(1, 4), (4, 1), (2, 2), (3, 1), (1, 3)\} $。
12. 已知全集$ U = \{x | x 為不大于 30 的質(zhì)數(shù)\} $,集合$ A$,$ B $均為全集$ U $的子集。若$ A \cap \complement_U B = \{5, 13, 23\} $,$ B \cap \complement_U A = \{11, 19, 29\} $,$ \complement_U A \cap \complement_U B = \{3, 7\} $,求集合$ A $和$ B $。
集合$ A $為
$\{2, 5, 13, 17, 23\}$
,集合$ B $為
$\{2, 11, 17, 19, 29\}$
。
答案:$ A = \{2, 5, 13, 17, 23\} $,$ B = \{2, 11, 17, 19, 29\} $
解析:不大于30的質(zhì)數(shù)有$ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 $,即$ U = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\} $。
由$ \complement_U A \cap \complement_U B = \{3, 7\} $,知$ A \cup B = U \setminus \{3, 7\} = \{2, 5, 11, 13, 17, 19, 23, 29\} $。
$ A $中獨(dú)有的元素為$ A \cap \complement_U B = \{5, 13, 23\} $,$ B $中獨(dú)有的元素為$ B \cap \complement_U A = \{11, 19, 29\} $,公共元素為$ (A \cup B) \setminus (A \cap \complement_U B \cup B \cap \complement_U A) = \{2, 17\} $。所以$ A = \{2, 5, 13, 17, 23\} $,$ B = \{2, 11, 17, 19, 29\} $。