4.證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法.要依據題設、題斷的結構特點、內在聯(lián)系,選擇適當的證明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟,技巧和語言特點.比較法的一般步驟是:作差(商)→變形→判斷符號(值).
3.在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數,將不等式的解化歸為直觀、形象的圖象關系,對含有參數的不等式,運用圖解法,可以使分類標準更加明晰.
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質及函數的單調性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數形結合是解不等式的常用方法.方程的根、函數的性質和圖象都與不等式的解密切相關,要善于把它們有機地聯(lián)系起來,相互轉化和相互變用.
1.解不等式的核心問題是不等式的同解變形,不等式的性質則是不等式變形的理論依據,方程的根、函數的性質和圖象都與不等式的解法密切相關,要善于把它們有機地聯(lián)系起來,互相轉化.在解不等式中,換元法和圖解法是常用的技巧之一.通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數、數形結合,則可將不等式的解化歸為直觀、形象的圖形關系,對含有參數的不等式,運用圖解法可以使得分類標準明晰.
21.已知
,奇函數
在
上單調.
(Ⅰ)求字母
應滿足的條件;
(Ⅱ)設
,且滿足
,求證:
.
20.已知偶函數f(x)=cosqsinx-sin(x-q)+(tanq-2)sinx-sinq的最小值是0,求f(x)的最大值 及此時x的集合.
19. 設f(x)=lg
,如果當x∈(-∞,1]時f(x)有意義,求
實數a的取值范圍。
18. 已知△ABC三內角A、B、C的大小成等差數列,且tanA·tanC=2+
,又知頂點C的對邊c上的高等于4
,求△ABC的三邊a、b、c及三內角。
17. 如圖,AB是圓O的直徑,PA垂直于圓O所在平面,C是圓周上任一點,設∠BAC=θ,PA=AB=2r,求異面直線PB和AC的距離。
16. 設等差數列{a
}的前n項的和為S
,已知a
=12,S
>0,S
<0 。
①.求公差d的取值范圍;
②.指出S
、S
、…、S
中哪一個值最大,并說明理由。(1992年全國高考)
|
|
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com