1.在全面復習函數(shù)有關(guān)知識的基礎(chǔ)上,進一步深刻理解函數(shù)的有關(guān)概念,全面把握各類函數(shù)的特征,提高運用基礎(chǔ)知識解決問題的能力.
3.重視綜合運用知識分析問題解決問題的能力和推理論證能力的培養(yǎng).函數(shù)是數(shù)學復習的開始,還不可能在大范圍內(nèi)綜合運用知識.但從復習開始就讓學生樹立綜合運用知識解決問題的意識是十分重要的.推理論證能力是學生的薄弱環(huán)節(jié),近幾年高考命題中加強對這方面的考查,尤其是對代數(shù)推理論證能力的考查是十分必要的.本課題在例題安排上作了這方面的考慮.
具體要求是:
2.以數(shù)學知識為載體突出數(shù)學思想方法.數(shù)學思想方法是觀念性的東西,是解決數(shù)學問題的靈魂,同時它又離不開具體的數(shù)學知識.函數(shù)內(nèi)容最重要的數(shù)學思想是函數(shù)思想和數(shù)形結(jié)合的思想.此外還應注意在解題中運用的分類討論、換元等思想方法.解較綜合的數(shù)學問題要進行一系列等價轉(zhuǎn)化或非等價轉(zhuǎn)化.因此本課題也十分重視轉(zhuǎn)化的數(shù)學思想.
函數(shù)的綜合復習是在系統(tǒng)復習函數(shù)有關(guān)知識的基礎(chǔ)上進行函數(shù)的綜合應用:
1.在應用中深化基礎(chǔ)知識.在復習中基礎(chǔ)知識經(jīng)歷一個由分散到系統(tǒng),由單一到綜合的發(fā)展過程.這個過程不是一次完成的,而是螺旋式上升的.因此要在應用深化基礎(chǔ)知識的同時,使基礎(chǔ)知識向深度和廣度發(fā)展.
(二)函數(shù)的圖象
1.掌握描繪函數(shù)圖象的兩種基本方法--描點法和圖象變換法.
2.會利用函數(shù)圖象,進一步研究函數(shù)的性質(zhì),解決方程、不等式中的問題.
3.用數(shù)形結(jié)合的思想、分類討論的思想和轉(zhuǎn)化變換的思想分析解決數(shù)學問題.
4.掌握知識之間的聯(lián)系,進一步培養(yǎng)觀察、分析、歸納、概括和綜合分析能力.
以解析式表示的函數(shù)作圖象的方法有兩種,即列表描點法和圖象變換法,掌握這兩種方法是本節(jié)的重點.
運用描點法作圖象應避免描點前的盲目性,也應避免盲目地連點成線.要把表列在關(guān)鍵處,要把線連在恰當處.這就要求對所要畫圖象的存在范圍、大致特征、變化趨勢等作一個大概的研究.而這個研究要借助于函數(shù)性質(zhì)、方程、不等式等理論和手段,是一個難點.用圖象變換法作函數(shù)圖象要確定以哪一種函數(shù)的圖象為基礎(chǔ)進行變換,以及確定怎樣的變換.這也是個難點.
1.作函數(shù)圖象的一個基本方法
例7.作出下列函數(shù)的圖象(1)y=|x-2|(x+1);(2)y=10|lgx|.
分析:顯然直接用已知函數(shù)的解析式列表描點有些困難,除去對其函數(shù)性質(zhì)分析外,我們還應想到對已知解析式進行等價變形.
解:(1)當x≥2時,即x-2≥0時,
![]()
當x<2時,即x-2<0時,
![]()
![]()
這是分段函數(shù),每段函數(shù)圖象可根據(jù)二次函數(shù)圖象作出(見圖6)
(2)當x≥1時,lgx≥0,y=10|lgx|=10lgx=x;
當0<x<1時,lgx<0,![]()
所以![]()
這是分段函數(shù),每段函數(shù)可根據(jù)正比例函數(shù)或反比例函數(shù)作出.(見圖7)
![]()
說明:作不熟悉的函數(shù)圖象,可以變形成基本函數(shù)再作圖,但要注意變形過程是否等價,要特別注意x,y的變化范圍.因此必須熟記基本函數(shù)的圖象.例如:一次函數(shù)、反比例函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù),及三角函數(shù)、反三角函數(shù)的圖象.
在變換函數(shù)解析式中運用了轉(zhuǎn)化變換和分類討論的思想.
2.作函數(shù)圖象的另一個基本方法--圖象變換法.
一個函數(shù)圖象經(jīng)過適當?shù)淖儞Q(如平移、伸縮、對稱、旋轉(zhuǎn)等),得到另一個與之相關(guān)的圖象,這就是函數(shù)的圖象變換.
在高中,主要學習了三種圖象變換:平移變換、伸縮變換、對稱變換.
(1)平移變換
函數(shù)y=f(x+a)(a≠0)的圖象可以通過把函數(shù)y=f(x)的圖象向左(a>0)或向右(a<0)平移|a|個單位而得到;
函數(shù)y=f(x)+b(b≠0)的圖象可以通過把函數(shù)y=f(x)的圖象向上(b>0)或向下(b<0)平移|b|個單位而得到.
(2)伸縮變換
函數(shù)y=Af(x)(A>0,A≠1)的圖象可以通過把函數(shù)y=f(x)的圖象上各點的縱坐標伸長(A>1)或縮短(0<A<1)成原來的A倍,橫坐標不變而得到.
函數(shù)y=f(ωx)(ω>0,ω≠1)的圖象可以通過把函數(shù)y=f(x)的圖象上
![]()
而得到.
(3)對稱變換
函數(shù)y=-f(x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于x軸對稱的圖形而得到.
函數(shù)y=f(-x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于y軸對稱的圖形而得到.
函數(shù)y=-f(-x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于原點對稱的圖形而得到.
函數(shù)y=f-1(x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱的圖形而得到。
函數(shù)y=f(|x|)的圖象可以通過作函數(shù)y=f(x)在y軸右方的圖象及其與y軸對稱的圖形而得到.
函數(shù)y=|f(x)|的圖象可以通過作函數(shù)y=f(x)的圖象,然后把在x軸下方的圖象以x軸為對稱軸翻折到x軸上方,其余部分保持不變而得到.
例8.已知f(x+199)=4x
+4x+3(x∈R),那么函數(shù)f(x)的最小值為____.
分析:由f(x+199)的解析式求f(x)的解析式運算量較大,但這里我們注意到,y=f(x +100)與y=f(x),其圖象僅是左右平移關(guān)系,它們?nèi)〉?/p>
![]()
求得f(x)的最小值即f(x+199)的最小值是2.
說明:函數(shù)圖象與函數(shù)性質(zhì)本身在學習中也是密切聯(lián)系的,是“互相利用”關(guān)系,函數(shù)圖象在判斷函數(shù)奇偶性、單調(diào)性、周期性及求最值等方面都有重要用途.
(一)函數(shù)的性質(zhì)
函數(shù)的性質(zhì)是研究初等函數(shù)的基石,也是高考考查的重點內(nèi)容.在復習中要肯于在對定義的深入理解上下功夫.
復習函數(shù)的性質(zhì),可以從“數(shù)”和“形”兩個方面,從理解函數(shù)的單調(diào)性和奇偶性的定義入手,在判斷和證明函數(shù)的性質(zhì)的問題中得以鞏固,在求復合函數(shù)的單調(diào)區(qū)間、函數(shù)的最值及應用問題的過程中得以深化.具體要求是:
1.正確理解函數(shù)單調(diào)性和奇偶性的定義,能準確判斷函數(shù)的奇偶性,以及函數(shù)在某一區(qū)間的單調(diào)性,能熟練運用定義證明函數(shù)的單調(diào)性和奇偶性.
2.從數(shù)形結(jié)合的角度認識函數(shù)的單調(diào)性和奇偶性,深化對函數(shù)性質(zhì)幾何特征的理解和運用,歸納總結(jié)求函數(shù)最大值和最小值的常用方法.
3.培養(yǎng)學生用運動變化的觀點分析問題,提高學生用換元、轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學思想方法解決問題的能力.
這部分內(nèi)容的重點是對函數(shù)單調(diào)性和奇偶性定義的深入理解.
函數(shù)的單調(diào)性只能在函數(shù)的定義域內(nèi)來討論.函數(shù)y=f(x)在給定區(qū)間上的單調(diào)性,反映了函數(shù)在區(qū)間上函數(shù)值的變化趨勢,是函數(shù)在區(qū)間上的整體性質(zhì),但不一定是函數(shù)在定義域上的整體性質(zhì).函數(shù)的單調(diào)性是對某個區(qū)間而言的,所以要受到區(qū)間的限制.
對函數(shù)奇偶性定義的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)這兩個等式上,要明確對定義域內(nèi)任意一個x,都有f(-x)=f(x),f(-x)=-f(x)的實質(zhì)是:函數(shù)的定義域關(guān)于原點對稱.這是函數(shù)具備奇偶性的必要條件.稍加推廣,可得函數(shù)f(x)的圖象關(guān)于直線x=a對稱的充要條件是對定義域內(nèi)的任意x,都有f(x+a)=f(a-x)成立.函數(shù)的奇偶性是其相應圖象的特殊的對稱性的反映.
這部分的難點是函數(shù)的單調(diào)性和奇偶性的綜合運用.根據(jù)已知條件,調(diào)動相關(guān)知識,選擇恰當?shù)姆椒ń鉀Q問題,是對學生能力的較高要求.
1.對函數(shù)單調(diào)性和奇偶性定義的理解
例4.下面四個結(jié)論:①偶函數(shù)的圖象一定與y軸相交;②奇函數(shù)的圖象一定通過原點;③偶函數(shù)的圖象關(guān)于y軸對稱;④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),其中正確命題的個數(shù)是 ( )
A.1 B.2 C.3 D.4
分析:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定相交,因此③正確,①錯誤.
奇函數(shù)的圖象關(guān)于原點對稱,但不一定經(jīng)過原點,因此②不正確.
若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,如例1中的(3),故④錯誤,選A.
說明:既奇又偶函數(shù)的充要條件是定義域關(guān)于原點對稱且函數(shù)值恒為零.
2.復合函數(shù)的性質(zhì)
復合函數(shù)y=f[g(x)]是由函數(shù)u=g(x)和y=f(u)構(gòu)成的,因變量y通過中間變量u與自變量x建立起函數(shù)關(guān)系,函數(shù)u=g(x)的值域是y=f(u)定義域的子集.
復合函數(shù)的性質(zhì)由構(gòu)成它的函數(shù)性質(zhì)所決定,具備如下規(guī)律:
(1)單調(diào)性規(guī)律
如果函數(shù)u=g(x)在區(qū)間[m,n]上是單調(diào)函數(shù),且函數(shù)y=f(u)在區(qū)間[g(m),g(n)] (或[g(n),g(m)])上也是單調(diào)函數(shù),那么
若u=g(x),y=f(u)增減性相同,則復合函數(shù)y=f[g(x)]為增函數(shù);若u=g(x),y= f(u)增減性不同,則y=f[g(x)]為減函數(shù).
(2)奇偶性規(guī)律
若函數(shù)g(x),f(x),f[g(x)]的定義域都是關(guān)于原點對稱的,則u=g(x),y=f(u)都是奇函數(shù)時,y=f[g(x)]是奇函數(shù);u=g(x),y=f(u)都是偶函數(shù),或者一奇一偶時,y= f[g(x)]是偶函數(shù).
例5.若y=log
(2-ax)在[0,1]上是x的減函數(shù),則a的取值范圍是( )
A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)
分析:本題存在多種解法,但不管哪種方法,都必須保證:①使log
(2-ax)有意義,即a>0且a≠1,2-ax>0.②使log
(2-ax)在[0,1]上是x的減函數(shù).由于所給函數(shù)可分解為y=log
u,u=2-ax,其中u=2-ax在a>0時為減函數(shù),所以必須a>1;③[0,1]必須是y=log
(2-ax)定義域的子集.
解法一:因為f(x)在[0,1]上是x的減函數(shù),所以f(0)>f(1),
即log
2>log
(2-a).
![]()
解法二:由對數(shù)概念顯然有a>0且a≠1,因此u=2-ax在[0,1]上是減函數(shù),y= log
u應為增函數(shù),得a>1,排除A,C,再令
![]()
故排除D,選B.
說明:本題為1995年全國高考試題,綜合了多個知識點,無論是用直接法,還是用排除法都需要概念清楚,推理正確.
3.函數(shù)單調(diào)性與奇偶性的綜合運用
例6.甲、乙兩地相距Skm,汽車從甲地勻速行駛到乙地,速度不得超過c km/h,已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(km/h)的平方成正比,比例系數(shù)為b;固定部分為a元.
(1)把全程運輸成本y(元)表示為速度v(km/h)的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛.
分析:(1)難度不大,抓住關(guān)系式:全程運輸成本=單位時間運輸成本×全程運輸時間,而全程運輸時間=(全程距離)÷(平均速度)就可以解決.
![]()
![]()
故所求函數(shù)及其定義域為![]()
![]()
但由于題設(shè)條件限制汽車行駛速度不超過ckm/h,所以(2)的解決需要
![]()
論函數(shù)的增減性來解決.
![]()
![]()
![]()
![]()
![]()
由于v
v
>0,v
-v
>0,并且
![]()
又S>0,所以
即![]()
![]()
則當v=c時,y取最小值.
![]()
![]()
說明:此題是1997年全國高考試題.由于限制汽車行駛速度不得超過c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使難度有所增大.
3.求函數(shù)解析式舉例
例3.已知xy<0,并且4x
-9y
=36.由此能否確定一個函數(shù)關(guān)系y=f(x)?如果能,求出其解析式、定義域和值域;如果不能,請說明理由.
分析: 4x
-9y
=36在解析幾何中表示雙曲線的方程,僅此當然不能確定一個函數(shù)關(guān)系y=f(x),但加上條件xy<0呢?
![]()
![]()
![]()
所以![]()
因此能確定一個函數(shù)關(guān)系y=f(x).其定義域為(-∞,-3)∪(3,+∞).且不難得到其值域為(-∞,0)∪(0,+∞).
說明:本例從某種程度上揭示了函數(shù)與解析幾何中方程的內(nèi)在聯(lián)系.任何一個函數(shù)的解析式都可看作一個方程,在一定條件下,方程也可轉(zhuǎn)化為表示函數(shù)的解析式.求函數(shù)解析式還有兩類問題:
(1)求常見函數(shù)的解析式.由于常見函數(shù)(一次函數(shù),二次函數(shù),冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)及反三角函數(shù))的解析式的結(jié)構(gòu)形式是確定的,故可用待定系數(shù)法確定其解析式.這里不再舉例.
(2)從生產(chǎn)、生活中產(chǎn)生的函數(shù)關(guān)系的確定.這要把有關(guān)學科知識,生活經(jīng)驗與函數(shù)概念結(jié)合起來,舉例也宜放在函數(shù)復習的以后部分.
2.求函數(shù)值域的基本類型和常用方法
函數(shù)的值域是由其對應法則和定義域共同決定的.其類型依解析式的特點分可分三類:(1)求常見函數(shù)值域;(2)求由常見函數(shù)復合而成的函數(shù)的值域;(3)求由常見函數(shù)作某些“運算”而得函數(shù)的值域.
1.求函數(shù)定義域的基本類型和常用方法
由給定函數(shù)解析式求其定義域這類問題的代表,實際上是求使給定式有意義的x的取值范圍.它依賴于對各種式的認識與解不等式技能的熟練.這里的最高層次要求是給出的解析式還含有其他字
例2.已知函數(shù)
定義域為(0,2),求下列函數(shù)的定義域:
![]()
分析:x的函數(shù)f(x
)是由u=x
與f(u)這兩個函數(shù)復合而成的復合函數(shù),其中x是自變量,u是中間變量.由于f(x),f(u)是同一個函數(shù),故(1)為已知0<u<2,即0<x
<2.求x的取值范圍.
解:(1)由0<x
<2, 得
![]()
![]()
![]()
![]()
![]()
說明:本例(1)是求函數(shù)定義域的第二種類型,即不給出f(x)的解析式,由f(x)的定義域求函數(shù)f[g(x)]的定義域.關(guān)鍵在于理解復合函數(shù)的意義,用好換元法.(2)是二種類型的綜合.
求函數(shù)定義域的第三種類型是一些數(shù)學問題或?qū)嶋H問題中產(chǎn)生的函數(shù)關(guān)系,求其定義域。
3.通過對分段定義函數(shù),復合函數(shù),抽象函數(shù)等的認識,進一步體會函數(shù)關(guān)系的本質(zhì),進一步樹立運動變化,相互聯(lián)系、制約的函數(shù)思想,為函數(shù)思想的廣泛運用打好基礎(chǔ).
本部分的難點首先在于克服“函數(shù)就是解析式”的片面認識,真正明確不僅函數(shù)的對應法則,而且其定義域都包含著對函數(shù)關(guān)系的制約作用,并真正以此作為處理問題的指導.其次在于確定函數(shù)三要素、求反函數(shù)等課題的綜合性,不僅要用到解方程,解不等式等知識,還要用到換元思想、方程思想等與函數(shù)有關(guān)概念的結(jié)合.
Ⅰ 深化對函數(shù)概念的認識
例1.下列函數(shù)中,不存在反函數(shù)的是 ( )
![]()
分析:處理本題有多種思路.分別求所給各函數(shù)的反函數(shù),看是否存在是不好的,因為過程太繁瑣.
從概念看,這里應判斷對于給出函數(shù)值域內(nèi)的任意值,依據(jù)相應的對應法則,是否在其定義域內(nèi)都只有惟一確定的值與之對應,因此可作出給定函數(shù)的圖象,用數(shù)形結(jié)合法作判斷,這是常用方法。
此題作為選擇題還可采用估算的方法.對于D,y=3是其值域內(nèi)一個值,但若y=3,則可能x=2(2>1),也可能x=-1(-1≤-1).依據(jù)概念,則易得出D中函數(shù)不存在反函數(shù).于是決定本題選D.
說明:不論采取什么思路,理解和運用函數(shù)與其反函數(shù)的關(guān)系是這里解決問題的關(guān)鍵.
由于函數(shù)三要素在函數(shù)概念中的重要地位,那么掌握確定函數(shù)三要素的基本方法當然成了函數(shù)概念復習中的重要課題.
例1.(重慶市)函數(shù)
的定義域是( D )
A、
B、
C、
D、![]()
例2.(天津市)函數(shù)
(
)的反函數(shù)是( D )
A、
B、![]()
C、
D、![]()
也有個別小題的難度較大,如
例3.(北京市)函數(shù)
其中P、M為實數(shù)集R的兩個非空子集,又規(guī)定
,
,給出下列四個判斷:
①若
,則
②若
,則![]()
③若
,則
④若
,則![]()
其中正確判斷有( B )
A、 1個 B、 2個 C、 3個 D、 4個
分析:若
,則只有
這一種可能.②和④是正確的.
Ⅱ 系統(tǒng)小結(jié)確定函數(shù)三要素的基本類型與常用方法
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com