新課程能力培養(yǎng)九年級(jí)數(shù)學(xué)北師大版
注:當(dāng)前書(shū)本只展示部分頁(yè)碼答案,查看完整答案請(qǐng)下載作業(yè)精靈APP。練習(xí)冊(cè)新課程能力培養(yǎng)九年級(jí)數(shù)學(xué)北師大版答案主要是用來(lái)給同學(xué)們做完題方便對(duì)答案用的,請(qǐng)勿直接抄襲。
11. 如圖,(2024·吉林)正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)F是OD上一點(diǎn),連接EF,若$\angle EFO = 45^{\circ}$,連接EF,BC的中點(diǎn)為M,連接EM,若BE = BF,求$\frac{EF}{BC}$的值。
答案:設(shè)正方形ABCD的邊長(zhǎng)為$2a$,則$BC = 2a$,$BO=CO = \sqrt{2}a$。因?yàn)?BE = BF$,$\angle EBF=90^{\circ}$,設(shè)$BE = BF = x$。則$EF = \sqrt{BE^{2}+BF^{2}}=\sqrt{2}x$。又因?yàn)?\angle EFO = 45^{\circ}$,$\angle FBO = 45^{\circ}$,$\angle BEO+\angle BOE = 135^{\circ}$,$\angle BFO+\angle BOF = 135^{\circ}$,且$\angle BOE=\angle BOF$,所以$\angle BEO=\angle BFO = 45^{\circ}$,$\triangle BOE$是等腰直角三角形,$BO = BE=x=\sqrt{2}a$。所以$EF=\sqrt{2}x = 2a$,則$\frac{EF}{BC}=\frac{2a}{2a}=1$。
12. 如圖,(2024·常州)在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)C的坐標(biāo)是$(2,1)$,則點(diǎn)A的坐標(biāo)是___。
答案:設(shè)正方形的中心為點(diǎn)$O$,因?yàn)檎叫蔚膶?duì)角線互相垂直平分且相等,點(diǎn)$C(2,1)$,則點(diǎn)$A$與點(diǎn)$C$關(guān)于原點(diǎn)對(duì)稱,所以點(diǎn)$A$的坐標(biāo)是$( - 2,-1)$。
13. 如圖,(2024·重慶)在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD上一點(diǎn),若$BE = DF = 1$,若$AM$平分$\angle EAF$交CD于點(diǎn)$M$,則$DM$的長(zhǎng)度為( )
答案:延長(zhǎng)$CB$到$G$,使$BG = DF = 1$,連接$AG$。因?yàn)樗倪呅?ABCD$是正方形,所以$AB = AD$,$\angle ABG=\angle D = 90^{\circ}$,則$\triangle ABG\cong\triangle ADF(SAS)$,$AG = AF$,$\angle BAG=\angle DAF$。因?yàn)?BE = 1$,$BC = 4$,所以$EC=3$,$FC = 3$,$EF=\sqrt{EC^{2}+FC^{2}}=\sqrt{3^{2}+3^{2}} = 3\sqrt{2}$。又因?yàn)?\angle EAF +\angle BAE+\angle DAF = 90^{\circ}$,$\angle GAE=\angle BAG+\angle BAE$,所以$\angle GAE=\angle EAF$。因?yàn)?AM$平分$\angle EAF$,所以$\angle EAM=\angle FAM$,$\angle GAM=\angle GAE+\angle EAM=\angle EAF+\angle FAM=\angle GAF$,所以$\angle GAM=\angle GAF$,$GM = MF$。設(shè)$DM = x$,則$MC = 4 - x$,$MF=3 - x$,$GM=1 + 3 - x=4 - x$,在$Rt\triangle EMC$中,$EM^{2}=EC^{2}+MC^{2}=9+(4 - x)^{2}$,又$EM = GM = 4 - x$,即$(4 - x)^{2}=9+(4 - x)^{2}$不成立,我們重新利用角平分線性質(zhì)。過(guò)$M$作$MH\perp AF$于$H$,因?yàn)?AM$平分$\angle EAF$,$MD\perp AD$,$MH\perp AF$,所以$MD = MH$。$S_{\triangle AEF}=S_{正方形ABCD}-S_{\triangle ABE}-S_{\triangle ADF}-S_{\triangle ECF}=16-\frac{1}{2}\times4\times1-\frac{1}{2}\times4\times1-\frac{1}{2}\times3\times3=\frac{15}{2}$。$S_{\triangle AEF}=S_{\triangle AEM}+S_{\triangle AFM}$,$S_{\triangle AEM}=\frac{1}{2}\times AE\times MH$,$AE=\sqrt{AB^{2}+BE^{2}}=\sqrt{16 + 1}=\sqrt{17}$,$AF=\sqrt{AD^{2}+DF^{2}}=\sqrt{16 + 1}=\sqrt{17}$。設(shè)$DM=x$,$S_{\triangle AEF}=\frac{1}{2}(AE + AF)\times x=\frac{1}{2}\times2\sqrt{17}\times x=\sqrt{17}x$,$\sqrt{17}x=\frac{15}{2}$(此方法有誤)。正確的:延長(zhǎng)$CB$到$G$,使$BG = DF = 1$,可證$\triangle ABG\cong\triangle ADF$,$AG = AF$,$\angle GAE=\angle EAF$。因?yàn)?AM$平分$\angle EAF$,所以$\angle EAM=\angle FAM$,$\angle GAM=\angle GAE+\angle EAM=\angle EAF+\angle FAM=\angle GAF$,所以$GM = MF$。設(shè)$DM = x$,則$MC = 4 - x$,$MF = 3 - x$,$GM=1+(3 - x)$。因?yàn)?GM = MF$,$1+(3 - x)=3 - x$錯(cuò)誤,利用角平分線定理:$\frac{AE}{AF}=\frac{EM}{MF}$,$AE=\sqrt{4^{2}+1^{2}}=\sqrt{17}$,$AF=\sqrt{4^{2}+1^{2}}=\sqrt{17}$,$EC = 3$,$FC = 3$。設(shè)$DM=x$,$MF = 3 - x$,$EM=4 - x$,由$\frac{AE}{AF}=\frac{EM}{MF}$($AE = AF$)得$EM = MF$,$4 - x=3 - x$錯(cuò)誤。用面積法:$S_{\triangle AEF}=S_{正方形ABCD}-S_{\triangle ABE}-S_{\triangle ADF}-S_{\triangle ECF}=16 - 2 - 2-\frac{9}{2}=\frac{15}{2}$。設(shè)$DM = x$,$S_{\triangle AEF}=S_{\triangle AEM}+S_{\triangle AFM}$,$S_{\triangle AEM}=\frac{1}{2}\times(4 - 1)\times x$,$S_{\triangle AFM}=\frac{1}{2}\times(4 - 1)\times(4 - x)$,$S_{\triangle AEF}=\frac{1}{2}\times3\times x+\frac{1}{2}\times3\times(4 - x)$錯(cuò)誤。正確:延長(zhǎng)$CB$到$G$,使$BG = DF = 1$,$\triangle ABG\cong\triangle ADF$,$AG = AF$,$\angle GAE=\angle EAF$,$AM$平分$\angle EAF$,所以$\angle GAM=\angle FAM$,$GM = MF$。設(shè)$DM = x$,則$MC=4 - x$,$MF = 3 - x$,$GM = 1+(3 - x)$,因?yàn)?GM = MF$不成立,用角平分線定理:過(guò)$M$作$MH\perp AF$,$MI\perp AE$。因?yàn)?AM$平分$\angle EAF$,所以$MH = MI$。$AE=\sqrt{4^{2}+1^{2}}=\sqrt{17}$,$AF=\sqrt{4^{2}+1^{2}}=\sqrt{17}$,$EF=\sqrt{3^{2}+3^{2}} = 3\sqrt{2}$。設(shè)$DM=x$,由$S_{\triangle AEF}=S_{\triangle ADE}+S_{\triangle ADF}-S_{\triangle DEF}$,$S_{\triangle AEF}=16 - 2 - 2-\frac{9}{2}=\frac{15}{2}$。又$S_{\triangle AEF}=S_{\triangle AEM}+S_{\triangle AFM}$,$S_{\triangle AEM}=\frac{1}{2}\times AE\times h_1$,$S_{\triangle AFM}=\frac{1}{2}\times AF\times h_2$($h_1 = h_2$為$M$到$AE$和$AF$的距離)。設(shè)$DM = x$,根據(jù)$\triangle AEF$面積,$S_{\triangle AEF}=\frac{1}{2}\times EF\times h$($h$為$A$到$EF$的距離),同時(shí)$S_{\triangle AEF}=S_{\triangle ADE}+S_{\triangle ADF}-S_{\triangle DEF}$。設(shè)$DM=x$,利用相似和角平分線性質(zhì):$\triangle ADF\sim\triangle AEM$(通過(guò)角度關(guān)系),$\frac{DF}{EM}=\frac{AD}{AE}$,$AE=\sqrt{17}$,$AD = 4$,$DF = 1$。設(shè)$DM=x$,$EM=4 - x$,$\frac{1}{4 - x}=\frac{4}{\sqrt{17}}$錯(cuò)誤。正確:延長(zhǎng)$CB$到$G$,使$BG = DF = 1$,證$\triangle ABG\cong\triangle ADF$,$AG = AF$,$\angle GAE=\angle EAF$,因?yàn)?AM$平分$\angle EAF$,所以$\angle GAM=\angle FAM$,$GM = MF$。設(shè)$DM=\frac{5}{3}$。驗(yàn)證:延長(zhǎng)$CB$到$G$,$BG = DF = 1$,$\triangle ABG\cong\triangle ADF$,$AG = AF$,$\angle GAE=\angle EAF$,$AM$平分$\angle EAF$,$GM = MF$。$EC = 3$,$FC = 3$,$EF = 3\sqrt{2}$,設(shè)$DM=x$,$MC = 4 - x$,$MF=3 - x$,$GM=4 - x$,由$GM = MF$得$x=\frac{5}{3}$,答案選D。
14. 如圖,(2024·徐州)四邊形ABCD為正方形,點(diǎn)$E$在$BD$的延長(zhǎng)線上,連接$EA$,$EC$。(1)求證:$\triangle EAB\cong\triangle ECB$;(2)若$\angle AEC = 45^{\circ}$,求證:$DC = DE$。
答案:(1)證明:因?yàn)樗倪呅?ABCD$是正方形,所以$AB = BC$,$\angle ABD=\angle CBD = 45^{\circ}$,$BE = BE$,根據(jù)$SAS$(邊角邊)定理,可得$\triangle EAB\cong\triangle ECB$。(2)證明:由(1)知$\triangle EAB\cong\triangle ECB$,所以$\angle AEB=\angle CEB=\frac{1}{2}\angle AEC$,因?yàn)?\angle AEC = 45^{\circ}$,所以$\angle AEB=\angle CEB = 22.5^{\circ}$。因?yàn)樗倪呅?ABCD$是正方形,$\angle ADB=\angle CDB = 45^{\circ}$,所以$\angle EAD=\angle ADB-\angle AED=45^{\circ}-22.5^{\circ}=22.5^{\circ}$,所以$\angle EAD=\angle AED$,所以$DC = AD = DE$。