2、常量與變量
⑴、變量的定義:我們在觀察某一現(xiàn)象的過程時(shí),常常會遇到各種不同的量,其中有的量在過程中不起變化,我們把其稱之為常量;有的量在過程中是變化的,也就是可以取不同的數(shù)值,我們則把其稱之為變量。注:在過程中還有一種量,它雖然是變化的,但是它的變化相對于所研究的對象是極其微小的,我們則把它看作常量。
⑵、變量的表示:如果變量的變化是連續(xù)的,則常用區(qū)間來表示其變化范圍。在數(shù)軸上來說,區(qū)間是指介于某兩點(diǎn)之間的線段上點(diǎn)的全體。
|
區(qū)間的名稱 |
區(qū)間的滿足的不等式 |
區(qū)間的記號 |
區(qū)間在數(shù)軸上的表示 |
|
閉區(qū)間 |
a≤x≤b |
[a,b] |
|
|
開區(qū)間 |
a<x<b |
(a,b) |
|
|
半開區(qū)間 |
a<x≤b或a≤x<b |
(a,b]或[a,b) |
|
以上我們所述的都是有限區(qū)間,除此之外,還有無限區(qū)間:
[a,+∞):表示不小于a的實(shí)數(shù)的全體,也可記為:a≤x<+∞;
(-∞,b):表示小于b的實(shí)數(shù)的全體,也可記為:-∞<x<b;
(-∞,+∞):表示全體實(shí)數(shù),也可記為:-∞<x<+∞
注:其中-∞和+∞,分別讀作"負(fù)無窮大"和"正無窮大",它們不是數(shù),僅僅是記號。
⑶、鄰域:設(shè)α與δ是兩個(gè)實(shí)數(shù),且δ>0.滿足不等式│x-α│<δ的實(shí)數(shù)x的全體稱為點(diǎn)α的δ鄰域,點(diǎn)α稱為此鄰域的中心,δ稱為此鄰域的半徑。
5、無限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能設(shè)計(jì)一種比較這兩個(gè)集合中元素個(gè)數(shù)多少的方法嗎?
4、對于有限集合A、B、C,能不能找出這三個(gè)集合中元素個(gè)數(shù)與交集、并集元素個(gè)數(shù)之間的關(guān)系呢?
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。試判斷B是不是A的子集?是否存在實(shí)數(shù)a使A=B成立?
2、在平面直角坐標(biāo)系中,集合C={(x,y)|y=x}表示直線y=x,從這個(gè)角度看,集合D={(x,y)|方程組:2x-y=1,x+4y=5}表示什么?集合C、D之間有什么關(guān)系?請分別用集合語言和幾何語言說明這種關(guān)系。
1、學(xué)校里開運(yùn)動會,設(shè)A={x|x是參加一百米跑的同學(xué)},B={x|x是參加二百米跑的同學(xué)},C={x|x是參加四百米跑的同學(xué)}。學(xué)校規(guī)定,每個(gè)參加上述比賽的同學(xué)最多只能參加兩項(xiàng),請你用集合的運(yùn)算說明這項(xiàng)規(guī)定,并解釋以下集合運(yùn)算的含義。⑴、A∪B;⑵、A∩B。
1、集合的概念
一般地我們把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合(簡稱集)。集合具有確定性(給定集合的元素必須是確定的)和互異性(給定集合中的元素是互不相同的)。比如“身材較高的人”不能構(gòu)成集合,因?yàn)樗脑夭皇谴_定的。
我們通常用大字拉丁字母A、B、C、……表示集合,用小寫拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就說a屬于A,記作:a∈A,否則就說a不屬于A,記作:a
A。
⑴、全體非負(fù)整數(shù)組成的集合叫做非負(fù)整數(shù)集(或自然數(shù)集)。記作N
⑵、所有正整數(shù)組成的集合叫做正整數(shù)集。記作N+或N+。
⑶、全體整數(shù)組成的集合叫做整數(shù)集。記作Z。
⑷、全體有理數(shù)組成的集合叫做有理數(shù)集。記作Q。
⑸、全體實(shí)數(shù)組成的集合叫做實(shí)數(shù)集。記作R。
集合的表示方法
⑴、列舉法:把集合的元素一一列舉出來,并用“{}”括起來表示集合
⑵、描述法:用集合所有元素的共同特征來表示集合。
集合間的基本關(guān)系
⑴、子集:一般地,對于兩個(gè)集合A、B,如果集合A中的任意一個(gè)元素都是集合B的元素,我們就說A、B有包含關(guān)系,稱集合A為集合B的子集,記作A
B(或B
A)。。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此時(shí)集合A中的元素與集合B中的元素完全一樣,因此集合A與集合B相等,記作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一個(gè)元素屬于B但不屬于A,我們稱集合A是集合B的真子集。
⑷、空集:我們把不含任何元素的集合叫做空集。記作
,并規(guī)定,空集是任何集合的子集。
⑸、由上述集合之間的基本關(guān)系,可以得到下面的結(jié)論:
①、任何一個(gè)集合是它本身的子集。即A
A
②、對于集合A、B、C,如果A是B的子集,B是C的子集,則A是C的子集。
③、我們可以把相等的集合叫做“等集”,這樣的話子集包括“真子集”和“等集”。
集合的基本運(yùn)算
⑴、并集:一般地,由所有屬于集合A或?qū)儆诩螧的元素組成的集合稱為A與B的并集。記作A∪B。(在求并集時(shí),它們的公共元素在并集中只能出現(xiàn)一次。)
即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有屬于集合A且屬于集合B的元素組成的集合稱為A與B的交集。記作A∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、補(bǔ)集:
①全集:一般地,如果一個(gè)集合含有我們所研究問題中所涉及的所有元素,那么就稱這個(gè)集合為全集。通常記作U。
②補(bǔ)集:對于一個(gè)集合A,由全集U中不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補(bǔ)集。簡稱為集合A的補(bǔ)集,記作CUA。
即CUA={x|x∈U,且x
A}。
集合中元素的個(gè)數(shù)
⑴、有限集:我們把含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。
⑵、用card來表示有限集中元素的個(gè)數(shù)。例如A={a,b,c},則card(A)=3。
⑶、一般地,對任意兩個(gè)集合A、B,有
card(A)+card(B)=card(A∪B)+card(A∩B)
我的問題:
10、函數(shù)極限的運(yùn)算規(guī)則··· 11
9、函數(shù)的極限··· 9
8、數(shù)列的極限··· 8
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com