欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  424267  424275  424281  424285  424291  424293  424297  424303  424305  424311  424317  424321  424323  424327  424333  424335  424341  424345  424347  424351  424353  424357  424359  424361  424362  424363  424365  424366  424367  424369  424371  424375  424377  424381  424383  424387  424393  424395  424401  424405  424407  424411  424417  424423  424425  424431  424435  424437  424443  424447  424453  424461  447090 

1.根據(jù)學(xué)生的實(shí)際,有針對(duì)性地進(jìn)行復(fù)習(xí),提高復(fù)習(xí)的有效性.由于解析幾何通常有2-3小題和1大題,約占28分左右,而小題以考查基礎(chǔ)為主、解答題的第一問也較容易,因此,對(duì)于全市的所有不同類型的學(xué)校,都要做好該專題的復(fù)習(xí),千萬不能認(rèn)為該部分內(nèi)容較難而放棄對(duì)該部分內(nèi)容的專題復(fù)習(xí),并且根據(jù)生源狀況有針對(duì)性地進(jìn)行復(fù)習(xí),提高復(fù)習(xí)的有效性.

試題詳情

(十)軌跡方程

⑴ 曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;

⑵ 以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

那么,這個(gè)方程叫做曲線的方程;這條曲線叫做方程的曲線(圖形或軌跡).

試題詳情

(九)拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)

1.拋物線的定義:平面內(nèi)到一定點(diǎn)(F)和一條定直線(l)的距離相等的點(diǎn)的軌跡叫拋物線。這個(gè)定點(diǎn)F叫拋物線的焦點(diǎn),這條定直線l叫拋物線的準(zhǔn)線。

需強(qiáng)調(diào)的是,點(diǎn)F不在直線l上,否則軌跡是過點(diǎn)F且與l垂直的直線,而不是拋物線。

2.拋物線的方程有四種類型:

、、.

對(duì)于以上四種方程:應(yīng)注意掌握它們的規(guī)律:曲線的對(duì)稱軸是哪個(gè)軸,方程中的該項(xiàng)即為一次項(xiàng);一次項(xiàng)前面是正號(hào)則曲線的開口方向向x軸或y軸的正方向;一次項(xiàng)前面是負(fù)號(hào)則曲線的開口方向向x軸或y軸的負(fù)方向。

3.拋物線的幾何性質(zhì),以標(biāo)準(zhǔn)方程y2=2px為例

(1)范圍:x≥0;

(2)對(duì)稱軸:對(duì)稱軸為y=0,由方程和圖像均可以看出;

(3)頂點(diǎn):O(0,0),注:拋物線亦叫無心圓錐曲線(因?yàn)闊o中心);

(4)離心率:e=1,由于e是常數(shù),所以拋物線的形狀變化是由方程中的p決定的;

(5)準(zhǔn)線方程;

(6)焦半徑公式:拋物線上一點(diǎn)P(x1,y1),F(xiàn)為拋物線的焦點(diǎn),對(duì)于四種拋物線的焦半徑公式分別為(p>0):

    

(7)焦點(diǎn)弦長(zhǎng)公式:對(duì)于過拋物線焦點(diǎn)的弦長(zhǎng),可以用焦半徑公式推導(dǎo)出弦長(zhǎng)公式。設(shè)過拋物線y2=2px(p>O)的焦點(diǎn)F的弦為AB,A(x1,y1),B(x2,y2),AB的傾斜角為α,則有①|(zhì)AB|=x+x+p

以上兩公式只適合過焦點(diǎn)的弦長(zhǎng)的求法,對(duì)于其它的弦,只能用“弦長(zhǎng)公式”來求。

(8)直線與拋物線的關(guān)系:直線與拋物線方程聯(lián)立之后得到一元二次方程:x+bx+c=0,當(dāng)a≠0時(shí),兩者的位置關(guān)系的判定和橢圓、雙曲線相同,用判別式法即可;但如果a=0,則直線是拋物線的對(duì)稱軸或是和對(duì)稱軸平行的直線,此時(shí),直線和拋物線相交,但只有一個(gè)公共點(diǎn)。

試題詳情

(八)雙曲線的簡(jiǎn)單幾何性質(zhì)

1.雙曲線的實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,離心率>1,離心率e越大,雙曲線的開口越大.

2. 雙曲線的漸近線方程為或表示為.若已知雙曲線的漸近線方程是,即,那么雙曲線的方程具有以下形式:

,其中k是一個(gè)不為零的常數(shù).

   3.雙曲線的第二定義:平面內(nèi)到定點(diǎn)(焦點(diǎn))與到定直線(準(zhǔn)線)距離的比是一個(gè)大于1的常數(shù)(離心率)的點(diǎn)的軌跡叫做雙曲線.對(duì)于雙曲線,它的焦點(diǎn)坐標(biāo)是(-c,0)和(c,0),與它們對(duì)應(yīng)的準(zhǔn)線方程分別是.

在雙曲線中,a、b、c、e四個(gè)元素間有的關(guān)系,與橢圓一樣確定雙曲線的標(biāo)準(zhǔn)方程只要兩個(gè)獨(dú)立的條件.

試題詳情

(七)雙曲線及其標(biāo)準(zhǔn)方程

1.雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離的差的絕對(duì)值等于常數(shù)2a(小于||)的動(dòng)點(diǎn)的軌跡叫做雙曲線.在這個(gè)定義中,要注意條件2a<||,這一條件可以用“三角形的兩邊之差小于第三邊”加以理解.若2a=||,則動(dòng)點(diǎn)的軌跡是兩條射線;若2a>||,則無軌跡.

   若時(shí),動(dòng)點(diǎn)的軌跡僅為雙曲線的一個(gè)分支,又若時(shí),軌跡為雙曲線的另一支.而雙曲線是由兩個(gè)分支組成的,故在定義中應(yīng)為“差的絕對(duì)值”.

2.   雙曲線的標(biāo)準(zhǔn)方程:(a>0,b>0).這里,其中||=2c.要注意這里的a、b、c及它們之間的關(guān)系與橢圓中的異同.

3.雙曲線的標(biāo)準(zhǔn)方程判別方法是:如果項(xiàng)的系數(shù)是正數(shù),則焦點(diǎn)在x軸上;如果項(xiàng)的系數(shù)是正數(shù),則焦點(diǎn)在y軸上.對(duì)于雙曲線,a不一定大于b,因此不能像橢圓那樣,通過比較分母的大小來判斷焦點(diǎn)在哪一條坐標(biāo)軸上.

   4.求雙曲線的標(biāo)準(zhǔn)方程,應(yīng)注意兩個(gè)問題:⑴ 正確判斷焦點(diǎn)的位置;⑵ 設(shè)出標(biāo)準(zhǔn)方程后,運(yùn)用待定系數(shù)法求解.

試題詳情

(六)橢圓的參數(shù)方程

   橢圓(>0)的參數(shù)方程為(θ為參數(shù)).

   說明  ⑴ 這里參數(shù)θ叫做橢圓的離心角.橢圓上點(diǎn)P的離心角θ與直線OP的傾斜角α不同:;

⑵ 橢圓的參數(shù)方程可以由方程與三角恒等式相比較而得到,所以橢圓的參數(shù)方程的實(shí)質(zhì)是三角代換.

試題詳情

(五)橢圓的簡(jiǎn)單幾何性質(zhì)

1.橢圓的幾何性質(zhì):設(shè)橢圓方程為(>0).

⑴ 范圍: -a≤x≤a,-b≤x≤b,所以橢圓位于直線x=和y=所圍成的矩形里.

   ⑵ 對(duì)稱性:分別關(guān)于x軸、y軸成軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱.橢圓的對(duì)稱中心叫做橢圓的中心.

⑶ 頂點(diǎn):有四個(gè)(-a,0)、(a,0)(0,-b)、(0,b).

   線段、分別叫做橢圓的長(zhǎng)軸和短軸.它們的長(zhǎng)分別等于2a和2b,a和b分別叫做橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng). 所以橢圓和它的對(duì)稱軸有四個(gè)交點(diǎn),稱為橢圓的頂點(diǎn).

⑷ 離心率:橢圓的焦距與長(zhǎng)軸長(zhǎng)的比叫做橢圓的離心率.它的值表示橢圓的扁平程度.0<e<1.e越接近于1時(shí),橢圓越扁;反之,e越接近于0時(shí),橢圓就越接近于圓.

   2.橢圓的第二定義

⑴ 定義:平面內(nèi)動(dòng)點(diǎn)M與一個(gè)頂點(diǎn)的距離和它到一條定直線的距離的比是常數(shù)(e<1=時(shí),這個(gè)動(dòng)點(diǎn)的軌跡是橢圓.

⑵ 準(zhǔn)線:根據(jù)橢圓的對(duì)稱性,(>0)的準(zhǔn)線有兩條,它們的方程為.對(duì)于橢圓(>0)的準(zhǔn)線方程,只要把x換成y就可以了,即.

試題詳情

(四)橢圓及其標(biāo)準(zhǔn)方程

1.     橢圓的定義:橢圓的定義中,平面內(nèi)動(dòng)點(diǎn)與兩定點(diǎn)的距離的和大于||這個(gè)條件不可忽視.若這個(gè)距離之和小于||,則這樣的點(diǎn)不存在;若距離之和等于||,則動(dòng)點(diǎn)的軌跡是線段.

2.橢圓的標(biāo)準(zhǔn)方程:(>0),(>0).

3.橢圓的標(biāo)準(zhǔn)方程判別方法:判別焦點(diǎn)在哪個(gè)軸只要看分母的大。喝绻項(xiàng)的分母大于項(xiàng)的分母,則橢圓的焦點(diǎn)在x軸上,反之,焦點(diǎn)在y軸上.

4.求橢圓的標(biāo)準(zhǔn)方程的方法:⑴ 正確判斷焦點(diǎn)的位置;⑵ 設(shè)出標(biāo)準(zhǔn)方程后,運(yùn)用待定系數(shù)法求解.

試題詳情

(四)圓的有關(guān)問題

1.圓的標(biāo)準(zhǔn)方程

(r>0),稱為圓的標(biāo)準(zhǔn)方程,其圓心坐標(biāo)為(a,b),半徑為r.

特別地,當(dāng)圓心在原點(diǎn)(0,0),半徑為r時(shí),圓的方程為.

2.圓的一般方程

(>0)稱為圓的一般方程,

其圓心坐標(biāo)為(),半徑為.

當(dāng)=0時(shí),方程表示一個(gè)點(diǎn)(,);

當(dāng)<0時(shí),方程不表示任何圖形.

試題詳情

(三)線性規(guī)劃問題

1.線性規(guī)劃問題涉及如下概念:

⑴存在一定的限制條件,這些約束條件如果由x、y的一次不等式(或方程)組成的不等式組來表示,稱為線性約束條件.

⑵都有一個(gè)目標(biāo)要求,就是要求依賴于x、y的某個(gè)函數(shù)(稱為目標(biāo)函數(shù))達(dá)到最大值或最小值.特殊地,若此函數(shù)是x、y的一次解析式,就稱為線性目標(biāo)函數(shù).

⑶求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題,統(tǒng)稱為線性規(guī)劃問題.

⑷滿足線性約束條件的解(x,y)叫做可行解.

⑸所有可行解組成的集合,叫做可行域.

⑹使目標(biāo)函數(shù)取得最大值或最小值的可行解,叫做這個(gè)問題的最優(yōu)解.

2.線性規(guī)劃問題有以下基本定理:

⑴ 一個(gè)線性規(guī)劃問題,若有可行解,則可行域一定是一個(gè)凸多邊形.

⑵ 凸多邊形的頂點(diǎn)個(gè)數(shù)是有限的.

⑶ 對(duì)于不是求最優(yōu)整數(shù)解的線性規(guī)劃問題,最優(yōu)解一定在凸多邊形的頂點(diǎn)中找到.

3.線性規(guī)劃問題一般用圖解法.

試題詳情


同步練習(xí)冊(cè)答案