欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  422274  422282  422288  422292  422298  422300  422304  422310  422312  422318  422324  422328  422330  422334  422340  422342  422348  422352  422354  422358  422360  422364  422366  422368  422369  422370  422372  422373  422374  422376  422378  422382  422384  422388  422390  422394  422400  422402  422408  422412  422414  422418  422424  422430  422432  422438  422442  422444  422450  422454  422460  422468  447090 

93.(08青海省卷28題)王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對解題過程進(jìn)行回顧反思,效果會更好.某一天他利用30分鐘時間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖甲所示,用于回顧反思的時間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖乙所示(其中是拋物線的一部分,為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.

(1)求王亮解題的學(xué)習(xí)收益量與用于解題的時間之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求王亮回顧反思的學(xué)習(xí)收益量與用于回顧反思的時間之間的函數(shù)關(guān)系式;

(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學(xué)習(xí)收益總量最大?

(學(xué)習(xí)收益總量解題的學(xué)習(xí)收益量回顧反思的學(xué)習(xí)收益量)

 

(08青海省卷28題解析)解:(1)設(shè)

代入,得

.······································································································ (1分)

自變量的取值范圍是:.···························································· (2分)

(2)當(dāng)時,

設(shè),···················································································· (3分)

代入,得

.································································· (5分)

當(dāng)時,

············································································································· (6分)

(3)設(shè)王亮用于回顧反思的時間為分鐘,學(xué)習(xí)效益總量為,

則他用于解題的時間為分鐘.

當(dāng)時,

.························· (7分)

當(dāng)時,.············································································ (8分)

當(dāng)時,

.····································································· (9分)

的增大而減小,

當(dāng)時,

綜合所述,當(dāng)時,,此時.································ (10分)

即王亮用于解題的時間為26分鐘,用于回顧反思的時間為4分鐘時,學(xué)習(xí)收益總量最大.

······················································································································· (11分)

試題詳情

92.(08青海西寧28題)如圖14,已知半徑為1的軸交于兩點,的切線,切點為,圓心的坐標(biāo)為,二次函數(shù)的圖象經(jīng)過兩點.

(1)求二次函數(shù)的解析式;

(2)求切線的函數(shù)解析式;

(3)線段上是否存在一點,使得以為頂點的三角形與相似.若存在,請求出所有符合條件的點的坐標(biāo);若不存在,請說明理由.

(08青海西寧28題解析)解:(1)圓心的坐標(biāo)為,半徑為1,,……1分

二次函數(shù)的圖象經(jīng)過點

可得方程組················································································ 2分

解得:二次函數(shù)解析式為············································· 3分

(2)過點軸,垂足為.······························································· 4分

的切線,為切點,(圓的切線垂直于經(jīng)過切點的半徑).

中,

為銳角,···························· 5分

中,

坐標(biāo)為························································································· 6分

設(shè)切線的函數(shù)解析式為,由題意可知,······ 7分

切線的函數(shù)解析式為···································································· 8分

(3)存在.············································································································ 9分

①過點軸,與交于點.可得(兩角對應(yīng)相等兩三角形相似)

,············································ 10分

②過點,垂足為,過點作,垂足為

可得(兩角對應(yīng)相等兩三角開相似)

中,,

中,,

,······································· 11分

符合條件的點坐標(biāo)有······················································ 12分

試題詳情

91.(08內(nèi)蒙古赤峰25題)(本題滿分14分)

在平面直角坐標(biāo)系中給定以下五個點

(1)請從五點中任選三點,求一條以平行于軸的直線為對稱軸的拋物線的解析式;

(2)求該拋物線的頂點坐標(biāo)和對稱軸,并畫出草圖;

(3)已知點在拋物線的對稱軸上,直線過點且垂直于對稱軸.驗證:以為圓心,為半徑的圓與直線相切.請你進(jìn)一步驗證,以拋物線上的點為圓心為半徑的圓也與直線相切.由此你能猜想到怎樣的結(jié)論.

(08內(nèi)蒙古赤峰25題解析)25.解:(1)設(shè)拋物線的解析式為,

且過點

H .

.········································································································ (2分)

得方程組,

解得

拋物線的解析式為················ (4分)

(2)由············· (6分)

得頂點坐標(biāo)為,對稱軸為.·········· (8分)

(3)①連結(jié),過點作直線的垂線,垂足為,

中,,,

,

,

點為圓心,為半徑的與直線相切.····························· (10分)

②連結(jié)過點作直線的垂線,垂足為.過點垂足為

中,,

點為圓心為半徑的與直線相切.································ (12分)

③以拋物線上任意一點為圓心,以為半徑的圓與直線相切.····· (14分)

試題詳情

90.(08遼寧12市26題)(本題14分)26.如圖16,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線經(jīng)過三點.

(1)求過三點拋物線的解析式并求出頂點的坐標(biāo);

(2)在拋物線上是否存在點,使為直角三角形,若存在,直接寫出點坐標(biāo);若不存在,請說明理由;

(3)試探究在直線上是否存在一點,使得的周長最小,若存在,求出點的坐標(biāo);若不存在,請說明理由.

(08遼寧12市26題解析)

解:(1)直線軸交于點,與軸交于點

,························································································· 1分

都在拋物線上,

 

拋物線的解析式為························································ 3分

頂點······························································································· 4分

(2)存在··············································································································· 5分

············································································································· 7分

············································································································ 9分

(3)存在·············································································································· 10分

理由:

解法一:

延長到點,使,連接交直線于點,則點就是所求的點.

            ····················································································· 11分

過點于點

點在拋物線上,

中,,

,,

中,,

,,··············································· 12分

設(shè)直線的解析式為

  解得

································································································ 13分

  解得 

在直線上存在點,使得的周長最小,此時.··· 14分

解法二:

過點的垂線交軸于點,則點為點關(guān)于直線的對稱點.連接于點,則點即為所求.················································································ 11分

過點軸于點,則,

,

同方法一可求得

中,,可求得

為線段的垂直平分線,可證得為等邊三角形,

垂直平分

即點為點關(guān)于的對稱點.············································· 12分

設(shè)直線的解析式為,由題意得

  解得

································································································ 13分

  解得 

在直線上存在點,使得的周長最小,此時.··· 14分

試題詳情

89.(08遼寧沈陽26題)(本題14分)26.如圖所示,在平面直角坐標(biāo)系中,矩形的邊軸的負(fù)半軸上,邊軸的正半軸上,且,,矩形繞點按順時針方向旋轉(zhuǎn)后得到矩形.點的對應(yīng)點為點,點的對應(yīng)點為點,點的對應(yīng)點為點,拋物線過點

(1)判斷點是否在軸上,并說明理由;

(2)求拋物線的函數(shù)表達(dá)式;

(3)在軸的上方是否存在點,點,使以點為頂點的平行四邊形的面積是矩形面積的2倍,且點在拋物線上,若存在,請求出點,點的坐標(biāo);若不存在,請說明理由.

(08遼寧沈陽26題解析)解:(1)點軸上  1分

理由如下:

連接,如圖所示,在中,,

,

由題意可知:

軸上,軸上.········································································· 3分

(2)過點軸于點

,

中,,

在第一象限,

的坐標(biāo)為·························································································· 5分

由(1)知,點軸的正半軸上

的坐標(biāo)為

的坐標(biāo)為···························································································· 6分

拋物線經(jīng)過點

由題意,將,代入中得

  解得

所求拋物線表達(dá)式為:······················································· 9分

(3)存在符合條件的點,點.········································································· 10分

理由如下:矩形的面積

為頂點的平行四邊形面積為

由題意可知為此平行四邊形一邊,

邊上的高為2··································································································· 11分

依題意設(shè)點的坐標(biāo)為

在拋物線

解得,,

,

為頂點的四邊形是平行四邊形,

,,

當(dāng)點的坐標(biāo)為時,

的坐標(biāo)分別為,;

當(dāng)點的坐標(biāo)為時,

的坐標(biāo)分別為,.......................................14分

試題詳情

88.(08廣東肇慶25題)(本小題滿分10分)

已知點A(a,)、B(2ay)、C(3ay)都在拋物線上.

(1)求拋物線與x軸的交點坐標(biāo);

(2)當(dāng)a=1時,求△ABC的面積;

(3)是否存在含有y、y,且與a無關(guān)的等式?如果存在,試給出一個,并加以證明;如果不存在,說明理由.

(08廣東肇慶25題解析)(本小題滿分10分)

解:(1)由5=0,·············································································· (1分)

.·················································································· (2分)

∴拋物線與x軸的交點坐標(biāo)為(0,0)、(,0).······································· (3分)

(2)當(dāng)a=1時,得A(1,17)、B(2,44)、C(3,81),······························ (4分)

分別過點A、B、Cx軸的垂線,垂足分別為D、E、F,則有

=S - - ···················································· (5分)

     =--···································· (6分)

=5(個單位面積)········································································ (7分)

(3)如:. ········································································· (8分)

事實上, =45a2+36a                

     3()=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.············ (9分)

. ···················································································· (10分)

試題詳情

87.(08廣東茂名25題)(本題滿分10分)

如圖,在平面直角坐標(biāo)系中,拋物線=-++經(jīng)過A(0,-4)、B(,0)、 C(,0)三點,且-=5.

(1)求、的值;(4分)

(2)在拋物線上求一點D,使得四邊形BDCE是以BC為對   角線的菱形;(3分)

(3)在拋物線上是否存在一點P,使得四邊形BPOH是以OB為對角線的菱形?若存在,求出點P的坐標(biāo),并判斷這個菱形是否為正方形?若不存在,請說明理由.(3分)

(08廣東茂名25題解析)解:(1)解法一:

∵拋物線=-++經(jīng)過點A(0,-4),

  ∴=-4 ……1分

又由題意可知,、是方程-++=0的兩個根,

+=,  =-=6··································································· 2分

由已知得(-)=25

又(-)=(+)-4=-24

-24=25                   

解得 ··········································································································· 3分

當(dāng)=時,拋物線與軸的交點在軸的正半軸上,不合題意,舍去.

=-. ·········································································································· 4分

解法二:∵、是方程-++c=0的兩個根,

 即方程2-3+12=0的兩個根.

=,··········································································· 2分

==5,

     解得 ······························································································· 3分

     (以下與解法一相同.)  

   (2)∵四邊形BDCE是以BC為對角線的菱形,根據(jù)菱形的性質(zhì),點D必在拋物線的對稱軸上,    5分

      又∵=--4=-(+)+  ································· 6分

       ∴拋物線的頂點(-,)即為所求的點D.······································· 7分

   (3)∵四邊形BPOH是以OB為對角線的菱形,點B的坐標(biāo)為(-6,0),

根據(jù)菱形的性質(zhì),點P必是直線=-3與

拋物線=---4的交點, ···························································· 8分

     ∴當(dāng)=-3時,=-×(-3)×(-3)-4=4,

     ∴在拋物線上存在一點P(-3,4),使得四邊形BPOH為菱形. ·················· 9分

      四邊形BPOH不能成為正方形,因為如果四邊形BPOH為正方形,點P的坐標(biāo)只能是(-3,3),但這一點不在拋物線上.······································································································· 10分

試題詳情

86.(08湖北宜昌25題)如圖1,已知四邊形OABC中的三個頂點坐標(biāo)為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設(shè)移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù), m>1,n>0.

(1)請你確定n的值和點B的坐標(biāo);

(2)當(dāng)動點P是經(jīng)過點O,C的拋物線yax+bx+c的頂點,且在雙曲線y上時,求這時四邊形OABC的面積.

(08湖北宜昌25題解析)解:(1) 從圖中可知,當(dāng)POA運動時,△POC的面積Smz z由0逐步增大到2,則S由0逐步增大到m,故OA=2,n=2 . (1分)

同理,AB1,故點B的坐標(biāo)是(1,2).(2分)

(2)解法一:

∵拋物線yax+bx+c經(jīng)過點O(0,0),C(m ,0),∴c=0,b=-am,(3分)

∴拋物線為yaxamx,頂點坐標(biāo)為(,-am2).(4分)

如圖1,設(shè)經(jīng)過點OC,P的拋物線為l.

當(dāng)POA上運動時,O,P都在y軸上,

這時P,O,C三點不可能同在一條拋物線上,

∴這時拋物線l不存在, 故不存在m的值..①

當(dāng)點PC重合時,雙曲線y不可能經(jīng)過P,

故也不存在m的值.②(5分)

(說明:①②任做對一處評1分,兩處全對也只評一分)

當(dāng)PAB上運動時,即當(dāng)0<x≤1時,y=2,

拋物線l的頂點為P(,2).

P在雙曲線y上,可得 m,∵>2,與 x≤1不合,舍去.(6分)③

容易求得直線BC的解析式是:,(7分)

當(dāng)PBC上運動,設(shè)P的坐標(biāo)為  (x,y),當(dāng)P是頂點時 x

故得y,頂點P為(),

∵1< x<m,∴m>2,又∵P在雙曲線y上,

于是,×,化簡后得5m-22m+220,

解得,,(8分)

與題意2<x<m不合,舍去.④(9分)

故由①②③④,滿足條件的只有一個值:.

這時四邊形OABC的面積=.(10分)

(2)解法二:

∵拋物線yax+bx+c經(jīng)過點O(0,0),C(m ,0)

c=0,b=-am,(3分)

∴拋物線為yaxamx,頂點坐標(biāo)P為(,-am2). (4分)

m>1,∴>0,且≠m,

P不在邊OA上且不與C重合. (5分)

P在雙曲線y=上,∴×(- am2)=即a=- .

.①當(dāng)1<m≤2時,<≤1,如圖2,分別過B,Px軸的垂線,

M,N為垂足,此時點P在線段AB上,且縱坐標(biāo)為2,

∴-am2=2,即a=-.

a=- ,∴- =-,m=>2,而1<m≤2,不合題意,舍去.(6分)

②當(dāng)m≥2時,>1,如圖3,分別過B,Px軸的垂線,M,N為垂足,ON>OM,

此時點P在線段CB上,易證Rt△BMC∽Rt△PNC,

BMPNMCNC,即:  2∶PN=(m-1)∶,∴PN=(7分)

P的縱坐標(biāo)為- am2,∴=- am2,即a

a=-,∴- =

化簡得:5m2-22m+22=0.解得:m= ,(8分)

m≥2,所以m=舍去,(9分)

m = .

由以上,這時四邊形OABC的面積為:

(AB+OC) ×OA=(1+m) ×2=. (10分)

試題詳情

85.(08天津市卷26題)(本小題10分)

已知拋物線,

(Ⅰ)若,,求該拋物線與軸公共點的坐標(biāo);

(Ⅱ)若,且當(dāng)時,拋物線與軸有且只有一個公共點,求的取值范圍;

(Ⅲ)若,且時,對應(yīng)的;時,對應(yīng)的,試判斷當(dāng)時,拋物線與軸是否有公共點?若有,請證明你的結(jié)論;若沒有,闡述理由.

(08天津市卷26題解析)解(Ⅰ)當(dāng),時,拋物線為,

方程的兩個根為,

∴該拋物線與軸公共點的坐標(biāo)是.  ················································ 2分

(Ⅱ)當(dāng)時,拋物線為,且與軸有公共點.

對于方程,判別式≥0,有. ········································ 3分

①當(dāng)時,由方程,解得

此時拋物線為軸只有一個公共點.································· 4分

②當(dāng)時,

時,,

時,

由已知時,該拋物線與軸有且只有一個公共點,考慮其對稱軸為,

應(yīng)有  即

解得

綜上,.   ················································································ 6分

(Ⅲ)對于二次函數(shù)

由已知時,;時,,

,∴

于是.而,∴,即

.  ············································································································  7分

∵關(guān)于的一元二次方程的判別式

, 

∴拋物線軸有兩個公共點,頂點在軸下方.····························· 8分

又該拋物線的對稱軸,

,,,

,

又由已知時,;時,,觀察圖象,

可知在范圍內(nèi),該拋物線與軸有兩個公共點. ············································ 10分

試題詳情

83.(08廣東東莞22題)(本題滿分9分)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊

AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連結(jié)CD.

(1)填空:如圖9,AC=     ,BD=     ;四邊形ABCD是    梯形.

(2)請寫出圖9中所有的相似三角形(不含全等三角形).

(3)如圖10,若以AB所在直線為軸,過點A垂直于AB的直線為軸建立如圖10的平面直角坐標(biāo)系,保持ΔABD不動,將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

 

(08廣東東莞22題解析)解:(1),,…………………………1分

等腰;…………………………2分

  (2)共有9對相似三角形.(寫對3-5對得1分,寫對6-8對得2分,寫對9對得3分)

  、佟鱀CE、△ABE與△ACD或△BDC兩兩相似,分別是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5對)

②△ABD∽△EAD,△ABD∽△EBC;(有2對)

③△BAC∽△EAD,△BAC∽△EBC;(有2對)

所以,一共有9對相似三角形.………………………………5分

(3)由題意知,F(xiàn)P∥AE,

   ∴ ∠1=∠PFB,

又∵ ∠1=∠2=30°,

  ∴ ∠PFB=∠2=30°,

∴ FP=BP.…………………………6分

過點P作PK⊥FB于點K,則.

∵ AF=t,AB=8,

∴ FB=8-t,.

在Rt△BPK中,. ……………………7分

∴ △FBP的面積,

∴ S與t之間的函數(shù)關(guān)系式為:

    ,或. …………………………………8分

t的取值范圍為:. …………………………………………………………9分

84(08甘肅蘭州28題)(本題滿分12分)如圖19-1,是一張放在平面直角坐標(biāo)系中的矩形紙片,為原點,點軸的正半軸上,點軸的正半軸上,,

(1)在邊上取一點,將紙片沿翻折,使點落在邊上的點處,求兩點的坐標(biāo);

(2)如圖19-2,若上有一動點(不與重合)自點沿方向向點勻速運動,運動的速度為每秒1個單位長度,設(shè)運動的時間為秒(),過點作的平行線交于點,過點的平行線交于點.求四邊形的面積與時間之間的函數(shù)關(guān)系式;當(dāng)取何值時,有最大值?最大值是多少?

(3)在(2)的條件下,當(dāng)為何值時,以為頂點的三角形為等腰三角形,并求出相應(yīng)的時刻點的坐標(biāo).

 

(08甘肅蘭州28題解析)(本題滿分12分)

解:(1)依題意可知,折痕是四邊形的對稱軸,

中,,

點坐標(biāo)為(2,4).································································································ 2分

中,,  又

。 解得:

點坐標(biāo)為···································································································· 3分

(2)如圖①,

,又知,,

, 又

而顯然四邊形為矩形.

·························································· 5分

,又

當(dāng)時,有最大值.········································································ 6分

(3)(i)若以為等腰三角形的底,則(如圖①)

中,,的中點,

,的中點.

過點,垂足為,則的中位線,

,,

當(dāng)時,為等腰三角形.

此時點坐標(biāo)為.··························································································· 8分

(ii)若以為等腰三角形的腰,則(如圖②)

中,

過點,垂足為

,

,,

當(dāng)時,(),此時點坐標(biāo)為.·························· 11分

綜合(i)(ii)可知,時,以為頂點的三角形為等腰三角形,相應(yīng)點的坐標(biāo)為.·········································································································· 12分

試題詳情


同步練習(xí)冊答案