93.(08青海省卷28題)王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對解題過程進(jìn)行回顧反思,效果會更好.某一天他利用30分鐘時間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時間
(單位:分鐘)與學(xué)習(xí)收益量
的關(guān)系如圖甲所示,用于回顧反思的時間
(單位:分鐘)與學(xué)習(xí)收益量
的關(guān)系如圖乙所示(其中
是拋物線的一部分,
為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.
(1)求王亮解題的學(xué)習(xí)收益量
與用于解題的時間
之間的函數(shù)關(guān)系式,并寫出自變量
的取值范圍;
(2)求王亮回顧反思的學(xué)習(xí)收益量
與用于回顧反思的時間
之間的函數(shù)關(guān)系式;
(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量
解題的學(xué)習(xí)收益量
回顧反思的學(xué)習(xí)收益量)
(08青海省卷28題解析)解:(1)設(shè)
,
把
代入,得
.
.······································································································ (1分)
自變量
的取值范圍是:
.···························································· (2分)
(2)當(dāng)
時,
設(shè)
,···················································································· (3分)
把
代入,得
,
.
.································································· (5分)
當(dāng)
時,
············································································································· (6分)
即
.
(3)設(shè)王亮用于回顧反思的時間為
分鐘,學(xué)習(xí)效益總量為
,
則他用于解題的時間為
分鐘.
當(dāng)
時,
.························· (7分)
當(dāng)
時,
.············································································ (8分)
當(dāng)
時,
.····································································· (9分)
隨
的增大而減小,
當(dāng)
時,
.
綜合所述,當(dāng)
時,
,此時
.································ (10分)
即王亮用于解題的時間為26分鐘,用于回顧反思的時間為4分鐘時,學(xué)習(xí)收益總量最大.
······················································································································· (11分)
92.(08青海西寧28題)如圖14,已知半徑為1的
與
軸交于
兩點,
為
的切線,切點為
,圓心
的坐標(biāo)為
,二次函數(shù)
的圖象經(jīng)過
兩點.
(1)求二次函數(shù)的解析式;
(2)求切線
的函數(shù)解析式;
(3)線段
上是否存在一點
,使得以
為頂點的三角形與
相似.若存在,請求出所有符合條件的點
的坐標(biāo);若不存在,請說明理由.
(08青海西寧28題解析)解:(1)
圓心
的坐標(biāo)為
,
半徑為1,
,
……1分
二次函數(shù)
的圖象經(jīng)過點
,
可得方程組
················································································ 2分
解得:![]()
二次函數(shù)解析式為
············································· 3分
(2)過點
作
軸,垂足為
.······························································· 4分
是
的切線,
為切點,
(圓的切線垂直于經(jīng)過切點的半徑).
在
中,![]()
為銳角,
···························· 5分
,
在
中,
.
.
點
坐標(biāo)為
························································································· 6分
設(shè)切線
的函數(shù)解析式為
,由題意可知
,
······ 7分
切線
的函數(shù)解析式為
···································································· 8分
(3)存在.············································································································ 9分
①過點
作
軸,與
交于點
.可得
(兩角對應(yīng)相等兩三角形相似)
,
············································ 10分
②過點
作
,垂足為
,過
點作
,垂足為
.
可得
(兩角對應(yīng)相等兩三角開相似)
在
中,
,
,
在
中,
,
,
······································· 11分
符合條件的
點坐標(biāo)有
,
······················································ 12分
91.(08內(nèi)蒙古赤峰25題)(本題滿分14分)
在平面直角坐標(biāo)系中給定以下五個點
.
(1)請從五點中任選三點,求一條以平行于
軸的直線為對稱軸的拋物線的解析式;
(2)求該拋物線的頂點坐標(biāo)和對稱軸,并畫出草圖;
(3)已知點
在拋物線的對稱軸上,直線
過點
且垂直于對稱軸.驗證:以
為圓心,
為半徑的圓與直線
相切.請你進(jìn)一步驗證,以拋物線上的點
為圓心
為半徑的圓也與直線
相切.由此你能猜想到怎樣的結(jié)論.
(08內(nèi)蒙古赤峰25題解析)25.解:(1)設(shè)拋物線的解析式為
,
且過點
,
由
在
H .
則
.········································································································ (2分)
得方程組
,
解得
.
拋物線的解析式為
················ (4分)
(2)由
············· (6分)
得頂點坐標(biāo)為
,對稱軸為
.·········· (8分)
(3)①連結(jié)
,過點
作直線
的垂線,垂足為
,
則
.
在
中,
,
,
,
,
以
點為圓心,
為半徑的
與直線
相切.····························· (10分)
②連結(jié)
過點
作直線
的垂線,垂足為
.過點
作
垂足為
,
則
.
在
中,
,
.
.
以
點為圓心
為半徑的
與直線
相切.································ (12分)
③以拋物線上任意一點
為圓心,以
為半徑的圓與直線
相切.····· (14分)
90.(08遼寧12市26題)(本題14分)26.如圖16,在平面直角坐標(biāo)系中,直線
與
軸交于點
,與
軸交于點
,拋物線
經(jīng)過
三點.
(1)求過
三點拋物線的解析式并求出頂點
的坐標(biāo);
(2)在拋物線上是否存在點
,使
為直角三角形,若存在,直接寫出
點坐標(biāo);若不存在,請說明理由;
(3)試探究在直線
上是否存在一點
,使得
的周長最小,若存在,求出
點的坐標(biāo);若不存在,請說明理由.
(08遼寧12市26題解析)
解:(1)
直線
與
軸交于點
,與
軸交于點
.
,
························································································· 1分
點
都在拋物線上,
![]()
拋物線的解析式為
························································ 3分
頂點
······························································································· 4分
(2)存在··············································································································· 5分
············································································································· 7分
············································································································ 9分
(3)存在·············································································································· 10分
理由:
解法一:
延長
到點
,使
,連接
交直線
于點
,則點
就是所求的點.
····················································································· 11分
過點
作
于點
.
點在拋物線
上,![]()
在
中,
,
,
,
在
中,
,
,
,
··············································· 12分
設(shè)直線
的解析式為![]()
解得![]()
································································································ 13分
解得
![]()
在直線
上存在點
,使得
的周長最小,此時
.··· 14分
解法二:
過點
作
的垂線交
軸于點
,則點
為點
關(guān)于直線
的對稱點.連接
交
于點
,則點
即為所求.················································································ 11分
過點
作
軸于點
,則
,
.
,![]()
![]()
同方法一可求得
.
在
中,
,
,可求得
,
為線段
的垂直平分線,可證得
為等邊三角形,
垂直平分
.
即點
為點
關(guān)于
的對稱點.
············································· 12分
設(shè)直線
的解析式為
,由題意得
解得![]()
································································································ 13分
解得
![]()
在直線
上存在點
,使得
的周長最小,此時
.··· 14分
89.
(08遼寧沈陽26題)(本題14分)26.如圖所示,在平面直角坐標(biāo)系中,矩形
的邊
在
軸的負(fù)半軸上,邊
在
軸的正半軸上,且
,
,矩形
繞點
按順時針方向旋轉(zhuǎn)
后得到矩形
.點
的對應(yīng)點為點
,點
的對應(yīng)點為點
,點
的對應(yīng)點為點
,拋物線
過點
.
(1)判斷點
是否在
軸上,并說明理由;
(2)求拋物線的函數(shù)表達(dá)式;
(3)在
軸的上方是否存在點
,點
,使以點
為頂點的平行四邊形的面積是矩形
面積的2倍,且點
在拋物線上,若存在,請求出點
,點
的坐標(biāo);若不存在,請說明理由.
(08遼寧沈陽26題解析)解:(1)點
在
軸上 1分
理由如下:
連接
,如圖所示,在
中,
,
,![]()
,![]()
由題意可知:![]()
![]()
點
在
軸上,
點
在
軸上.········································································· 3分
(2)過點
作
軸于點![]()
,![]()
在
中,
,![]()
點
在第一象限,
點
的坐標(biāo)為
·························································································· 5分
由(1)知
,點
在
軸的正半軸上
點
的坐標(biāo)為![]()
點
的坐標(biāo)為
···························································································· 6分
拋物線
經(jīng)過點
,
![]()
由題意,將
,
代入
中得
解得![]()
所求拋物線表達(dá)式為:
······················································· 9分
(3)存在符合條件的點
,點
.········································································· 10分
理由如下:
矩形
的面積![]()
以
為頂點的平行四邊形面積為
.
由題意可知
為此平行四邊形一邊,
又![]()
邊上的高為2··································································································· 11分
依題意設(shè)點
的坐標(biāo)為![]()
點
在拋物線
上
![]()
解得,
,![]()
,![]()
以
為頂點的四邊形是平行四邊形,
![]()
,
,
當(dāng)點
的坐標(biāo)為
時,
點
的坐標(biāo)分別為
,
;
當(dāng)點
的坐標(biāo)為
時,
點
的坐標(biāo)分別為
,
.......................................14分
88.(08廣東肇慶25題)(本小題滿分10分)
已知點A(a,
)、B(2a,y
)、C(3a,y
)都在拋物線
上.
(1)求拋物線與x軸的交點坐標(biāo);
(2)當(dāng)a=1時,求△ABC的面積;
(3)是否存在含有
、y
、y
,且與a無關(guān)的等式?如果存在,試給出一個,并加以證明;如果不存在,說明理由.
(08廣東肇慶25題解析)(本小題滿分10分)
解:(1)由5
=0,·············································································· (1分)
得
,
.·················································································· (2分)
∴拋物線與x軸的交點坐標(biāo)為(0,0)、(
,0).······································· (3分)
(2)當(dāng)a=1時,得A(1,17)、B(2,44)、C(3,81),······························ (4分)
分別過點A、B、C作x軸的垂線,垂足分別為D、E、F,則有
=S
-
-
···················································· (5分)
=
-
-
···································· (6分)
=5(個單位面積)········································································ (7分)
(3)如:
. ········································································· (8分)
事實上,
=45a2+36a.
3(
)=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.············ (9分)
∴
. ···················································································· (10分)
87.(08廣東茂名25題)(本題滿分10分)
如圖,在平面直角坐標(biāo)系中,拋物線
=-![]()
![]()
+![]()
+
經(jīng)過A(0,-4)、B(![]()
,0)、 C(![]()
,0)三點,且![]()
-![]()
=5.
(1)求
、
的值;(4分)
(2)在拋物線上求一點D,使得四邊形BDCE是以BC為對 角線的菱形;(3分)
(3)在拋物線上是否存在一點P,使得四邊形BPOH是以OB為對角線的菱形?若存在,求出點P的坐標(biāo),并判斷這個菱形是否為正方形?若不存在,請說明理由.(3分)
(08廣東茂名25題解析)解:(1)解法一:
∵拋物線
=-![]()
![]()
+![]()
+
經(jīng)過點A(0,-4),
∴
=-4 ……1分
又由題意可知,![]()
、![]()
是方程-![]()
![]()
+![]()
+
=0的兩個根,
∴![]()
+![]()
=![]()
, ![]()
![]()
![]()
=-![]()
=6··································································· 2分
由已知得(![]()
-![]()
)
=25
又(![]()
-![]()
)
=(![]()
+![]()
)
-4![]()
![]()
![]()
=![]()
![]()
-24
∴
![]()
![]()
-24=25
解得
=±
··········································································································· 3分
當(dāng)
=
時,拋物線與
軸的交點在
軸的正半軸上,不合題意,舍去.
∴
=-
. ·········································································································· 4分
解法二:∵![]()
、![]()
是方程-![]()
![]()
+![]()
+c=0的兩個根,
即方程2![]()
-3![]()
+12=0的兩個根.
∴
=
,··········································································· 2分
∴![]()
-![]()
=
=5,
解得
=±
······························································································· 3分
(以下與解法一相同.)
(2)∵四邊形BDCE是以BC為對角線的菱形,根據(jù)菱形的性質(zhì),點D必在拋物線的對稱軸上, 5分
又∵
=-![]()
![]()
-![]()
-4=-
(
+
)
+
································· 6分
∴拋物線的頂點(-
,
)即為所求的點D.······································· 7分
(3)∵四邊形BPOH是以OB為對角線的菱形,點B的坐標(biāo)為(-6,0),
根據(jù)菱形的性質(zhì),點P必是直線
=-3與
拋物線
=-![]()
![]()
-![]()
-4的交點, ···························································· 8分
∴當(dāng)
=-3時,
=-
×(-3)
-
×(-3)-4=4,
∴在拋物線上存在一點P(-3,4),使得四邊形BPOH為菱形. ·················· 9分
四邊形BPOH不能成為正方形,因為如果四邊形BPOH為正方形,點P的坐標(biāo)只能是(-3,3),但這一點不在拋物線上.······································································································· 10分
86.(08湖北宜昌25題)如圖1,已知四邊形OABC中的三個頂點坐標(biāo)為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設(shè)移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù), m>1,n>0.
(1)請你確定n的值和點B的坐標(biāo);
(2)當(dāng)動點P是經(jīng)過點O,C的拋物線y=ax
+bx+c的頂點,且在雙曲線y=
上時,求這時四邊形OABC的面積.
(08湖北宜昌25題解析)解:(1)
從圖中可知,當(dāng)P從O向A運動時,△POC的面積S=
mz, z由0逐步增大到2,則S由0逐步增大到m,故OA=2,n=2 . (1分)
同理,AB=1,故點B的坐標(biāo)是(1,2).(2分)
(2)解法一:
∵拋物線y=ax
+bx+c經(jīng)過點O(0,0),C(m ,0),∴c=0,b=-am,(3分)
∴拋物線為y=ax
-amx,頂點坐標(biāo)為(
,-am2).(4分)
如圖1,設(shè)經(jīng)過點O,C,P的拋物線為l.
當(dāng)P在OA上運動時,O,P都在y軸上,
這時P,O,C三點不可能同在一條拋物線上,
∴這時拋物線l不存在, 故不存在m的值..①
當(dāng)點P與C重合時,雙曲線y=
不可能經(jīng)過P,
故也不存在m的值.②(5分)
(說明:①②任做對一處評1分,兩處全對也只評一分)
當(dāng)P在AB上運動時,即當(dāng)0<x
≤1時,y
=2,
拋物線l的頂點為P(
,2).
∵P在雙曲線y=
上,可得 m=
,∵
>2,與 x
=
≤1不合,舍去.(6分)③
容易求得直線BC的解析式是:
,(7分)
當(dāng)P在BC上運動,設(shè)P的坐標(biāo)為 (x
,y
),當(dāng)P是頂點時 x
=
,
故得y
=
=
,頂點P為(
,
),
∵1<
x
=
<m,∴m>2,又∵P在雙曲線y=
上,
于是,
×
=
,化簡后得5m
-22m+22=0,
解得
,
,(8分)![]()
![]()
![]()
與題意2<x
=
<m不合,舍去.④(9分)
故由①②③④,滿足條件的只有一個值:
.
這時四邊形OABC的面積=
=
.(10分)
(2)
解法二:
∵拋物線y=ax
+bx+c經(jīng)過點O(0,0),C(m ,0)
∴c=0,b=-am,(3分)
∴拋物線為y=ax
-amx,頂點坐標(biāo)P為(,-am2).
(4分)
∵m>1,∴>0,且≠m,
∴P不在邊OA上且不與C重合. (5分)
∵P在雙曲線y=上,∴×(- am2)=即a=- .
.①當(dāng)1<m≤2時,<≤1,如圖2,分別過B,P作x軸的垂線,
M,N為垂足,此時點P在線段AB上,且縱坐標(biāo)為2,
∴-am2=2,即a=-.
而a=- ,∴- =-,m=>2,而1<m≤2,不合題意,舍去.(6分)
②當(dāng)m≥2時,>1,如圖3,分別過B,P作x軸的垂線,M,N為垂足,ON>OM,
此時點P在線段CB上,易證Rt△BMC∽Rt△PNC,
∴BM∶PN=MC∶NC,即: 2∶PN=(m-1)∶,∴PN=(7分)
而P的縱坐標(biāo)為- am2,∴=- am2,即a=
而a=-,∴- =
化簡得:5m2-22m+22=0.解得:m= ,(8分)
但m≥2,所以m=舍去,(9分)
取m = .
由以上,這時四邊形OABC的面積為:
(AB+OC) ×OA=(1+m) ×2=. (10分)
85.(08天津市卷26題)(本小題10分)
已知拋物線
,
(Ⅰ)若
,
,求該拋物線與
軸公共點的坐標(biāo);
(Ⅱ)若
,且當(dāng)
時,拋物線與
軸有且只有一個公共點,求
的取值范圍;
(Ⅲ)若
,且
時,對應(yīng)的
;
時,對應(yīng)的
,試判斷當(dāng)
時,拋物線與
軸是否有公共點?若有,請證明你的結(jié)論;若沒有,闡述理由.
(08天津市卷26題解析)解(Ⅰ)當(dāng)
,
時,拋物線為
,
方程
的兩個根為
,
.
∴該拋物線與
軸公共點的坐標(biāo)是
和
. ················································ 2分
(Ⅱ)當(dāng)
時,拋物線為
,且與
軸有公共點.
對于方程
,判別式
≥0,有
≤
. ········································ 3分
①當(dāng)
時,由方程
,解得
.
此時拋物線為
與
軸只有一個公共點
.·································
4分
②當(dāng)
時,
時,
,
時,
.
由已知
時,該拋物線與
軸有且只有一個公共點,考慮其對稱軸為
,
應(yīng)有
即![]()
解得
.
綜上,
或
. ················································································ 6分
(Ⅲ)對于二次函數(shù)
,
由已知
時,
;
時,
,
又
,∴
.
于是
.而
,∴
,即
.
∴
. ············································································································ 7分
∵關(guān)于
的一元二次方程
的判別式
,
∴拋物線
與
軸有兩個公共點,頂點在
軸下方.····························· 8分
又該拋物線的對稱軸
,
由
,
,
,
得
,
∴
.
又由已知
時,
;
時,
,觀察圖象,
可知在
范圍內(nèi),該拋物線與
軸有兩個公共點. ············································ 10分
83.(08廣東東莞22題)(本題滿分9分)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊
AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連結(jié)CD.
(1)填空:如圖9,AC= ,BD= ;四邊形ABCD是 梯形.
(2)請寫出圖9中所有的相似三角形(不含全等三角形).
(3)如圖10,若以AB所在直線為
軸,過點A垂直于AB的直線為
軸建立如圖10的平面直角坐標(biāo)系,保持ΔABD不動,將ΔABC向
軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.
(08廣東東莞22題解析)解:(1)
,
,…………………………1分
等腰;…………………………2分
(2)共有9對相似三角形.(寫對3-5對得1分,寫對6-8對得2分,寫對9對得3分)
、佟鱀CE、△ABE與△ACD或△BDC兩兩相似,分別是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5對)
②△ABD∽△EAD,△ABD∽△EBC;(有2對)
③△BAC∽△EAD,△BAC∽△EBC;(有2對)
所以,一共有9對相似三角形.………………………………5分
(3)由題意知,F(xiàn)P∥AE,
∴ ∠1=∠PFB,
又∵ ∠1=∠2=30°,
∴ ∠PFB=∠2=30°,
∴ FP=BP.…………………………6分
過點P作PK⊥FB于點K,則
.
∵ AF=t,AB=8,
∴ FB=8-t,
.
在Rt△BPK中,
. ……………………7分
∴ △FBP的面積
,
∴ S與t之間的函數(shù)關(guān)系式為:
,或
. …………………………………8分
t的取值范圍為:
. …………………………………………………………9分
84(08甘肅蘭州28題)(本題滿分12分)如圖19-1,
是一張放在平面直角坐標(biāo)系中的矩形紙片,
為原點,點
在
軸的正半軸上,點
在
軸的正半軸上,
,
.
(1)在
邊上取一點
,將紙片沿
翻折,使點
落在
邊上的點
處,求
兩點的坐標(biāo);
(2)如圖19-2,若
上有一動點
(不與
重合)自
點沿
方向向
點勻速運動,運動的速度為每秒1個單位長度,設(shè)運動的時間為
秒(
),過
點作
的平行線交
于點
,過點
作
的平行線交
于點
.求四邊形
的面積
與時間
之間的函數(shù)關(guān)系式;當(dāng)
取何值時,
有最大值?最大值是多少?
(3)在(2)的條件下,當(dāng)
為何值時,以
為頂點的三角形為等腰三角形,并求出相應(yīng)的時刻點
的坐標(biāo).
(08甘肅蘭州28題解析)(本題滿分12分)
解:(1)依題意可知,折痕
是四邊形
的對稱軸,
在
中,
,
.
.
.
點坐標(biāo)為(2,4).································································································ 2分
在
中,
,
又
.
。
解得:
.
點坐標(biāo)為
···································································································· 3分
(2)如圖①
,
.
,又知
,
,![]()
, 又
.
而顯然四邊形
為矩形.
·························································· 5分
,又![]()
當(dāng)
時,
有最大值
.········································································ 6分
(3)(i)若以
為等腰三角形的底,則
(如圖①)
在
中,
,
,
為
的中點,
![]()
.
又
,
為
的中點.
過點
作
,垂足為
,則
是
的中位線,
,
,
當(dāng)
時,
,
為等腰三角形.
此時
點坐標(biāo)為
.··························································································· 8分
(ii)若以
為等腰三角形的腰,則
(如圖②)
在
中,
.
過點
作
,垂足為
.
,
.
.
,
.
,
,
當(dāng)
時,(
),此時
點坐標(biāo)為
.·························· 11分
綜合(i)(ii)可知,
或
時,以
為頂點的三角形為等腰三角形,相應(yīng)
點的坐標(biāo)為
或
.·········································································································· 12分
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com