1.在實驗室中,通常將金屬鈉保存在
A.水中 B. 煤油中 C. 四氯化碳中 D.汽油中
102.(08廣東佛山25題)25.我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進行研究:
(1) 如圖1,在圓O所在平面上,放置一條直線
(
和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些(直接寫出兩個即可)?
(2) 如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線
和
(
與圓O分別交于點A、B,
與圓O分別交于點C、D).
請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之.
(3) 如圖3,其中AB是圓O的直徑,AC是弦,D是![]()
的中點,弦DE⊥AB于點F.
請找出點C和點E重合的條件,并說明理由.
(08廣東佛山25題解答)解:(1) 弦(圖中線段AB)、弧(圖中的ACB弧)、弓形、求弓形的面積(因為是封閉圖形)等. (寫對一個給1分,寫對兩個給2分)
(2) 情形1 如圖21,AB為弦,CD為垂直于弦AB的直徑. …………………………3分
結(jié)論:(垂徑定理的結(jié)論之一). …………………………………………………………4分
證明:略(對照課本的證明過程給分). …………………………………………………7分
情形2 如圖22,AB為弦,CD為弦,且AB與CD在圓內(nèi)相交于點P.
結(jié)論:
.
證明:略.
情形3 (圖略)AB為弦,CD為弦,且
與
在圓外相交于點P.
結(jié)論:
.
證明:略.
![]()
情形4 如圖23,AB為弦,CD為弦,且AB∥CD.
結(jié)論: = .
證明:略.
(上面四種情形中做一個即可,圖1分,結(jié)論1分,證明3分;
其它正確的情形參照給分;若提出的是錯誤的結(jié)論,則需證明結(jié)論是錯誤的)
(3) 若點C和點E重合,
則由圓的對稱性,知點C和點D關(guān)于直徑AB對稱. …………………………………8分
設(shè)
,則
,
.………………………………9分
又D是 的中點,所以
,
即
.………………………………………………………10分
解得
.……………………………………………………………11分
(若求得
或
等也可,評分可參照上面的標(biāo)準(zhǔn);也可以先直覺猜測點B、C是圓的十二等分點,然后說明)
101.(08山東聊城25題)25.(本題滿分12分)如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).
(1)要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?
(2)你感到折合而成的長方體盒子的側(cè)面積會不會有更大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由;
(3)如果把矩形硬紙板的四周分別剪去2個同樣大小的正方形和2個同樣形狀、同樣大小的矩形,然后折合成一個有蓋的長方體盒子,是否有側(cè)面積最大的情況;如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.
(08山東聊城25題解答)(本題滿分12分)
解:(1)設(shè)正方形的邊長為
cm,則
.························································································ 1分
即
.
解得
(不合題意,舍去),
.
剪去的正方形的邊長為1cm.·············································································· 3分
(注:通過觀察、驗證直接寫出正確結(jié)果給3分)
(2)有側(cè)面積最大的情況.
設(shè)正方形的邊長為
cm,盒子的側(cè)面積為
cm2,
則
與
的函數(shù)關(guān)系式為:
.
即
.······························································································· 5分
改寫為
.
當(dāng)
時,
.
即當(dāng)剪去的正方形的邊長為2.25cm時,長方體盒子的側(cè)面積最大為40.5cm2.········ 7分
(3)有側(cè)面積最大的情況.
設(shè)正方形的邊長為
cm,盒子的側(cè)面積為
cm2.
若按圖1所示的方法剪折,則
與
的函數(shù)關(guān)系式為:
.
即
.
當(dāng)
時,
.····························· 9分
若按圖2所示的方法剪折,則
與
的函數(shù)關(guān)系式為:
.
即
.
當(dāng)
時,
.················································································· 11分
比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長為
cm時,折成的有蓋長方體盒子的側(cè)面積最大,最大面積為
cm2.
說明:解答題各小題只給了一種解答及評分說明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù).
100.(08廣東梅州23題)
23.本題滿分11分.
如圖11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為
軸,過D且垂直于AB的直線為
軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點的坐標(biāo);
(2)求過A、D、C三點的拋物線的解析式及其對稱軸L.
(3)若P是拋物線的對稱軸L上的點,那么使
PDB為等腰三角形的點P有幾個?(不必求點P的坐標(biāo),只需說明理由)
(08廣東梅州23題解答)解: (1)
DC∥AB,AD=DC=CB,
∠CDB=∠CBD=∠DBA,··············································································· 0.5分
∠DAB=∠CBA,
∠DAB=2∠DBA, ············ 1分
∠DAB+∠DBA=90
,
∠DAB=60
, ·········· 1.5分
∠DBA=30
,
AB=4,
DC=AD=2,
········· 2分
Rt
AOD,OA=1,OD=
,··························· 2.5分
A(-1,0),D(0,
),C(2,
). · 4分
(2)根據(jù)拋物線和等腰梯形的對稱性知,滿足條件的拋物線必過點A(-1,0),B(3,0),
故可設(shè)所求為
=
(
+1)(
-3) ······························································ 6分
將點D(0,
)的坐標(biāo)代入上式得,
=
.
所求拋物線的解析式為
=
·········································· 7分
其對稱軸L為直線
=1.······················································································ 8分
(3)
PDB為等腰三角形,有以下三種情況:
①因直線L與DB不平行,DB的垂直平分線與L僅有一個交點P1,P1D=P1B,
P1DB為等腰三角形; ················································································· 9分
②因為以D為圓心,DB為半徑的圓與直線L有兩個交點P2、P3,DB=DP2,DB=DP3,
P2DB,
P3DB為等腰三角形;
③與②同理,L上也有兩個點P4、P5,使得 BD=BP4,BD=BP5. ···················· 10分
由于以上各點互不重合,所以在直線L上,使
PDB為等腰三角形的點P有5個.
99.(08福建南平26題)26.(14分)
(1)如圖1,圖2,圖3,在
中,分別以
為邊,向
外作正三角形,正四邊形,正五邊形,
相交于點
.
![]()
①如圖1,求證:
;
②探究:如圖1,
;
如圖2,
;
如圖3,
.
(2)如圖4,已知:
是以
為邊向
外所作正
邊形的一組鄰邊;
是以
為邊向
外所作正
邊形的一組鄰邊.
的延長相交于點
.
①猜想:如圖4,
(用含
的式子表示);
②根據(jù)圖4證明你的猜想.
(08福建南平26題解答)(1)①證法一:
與
均為等邊三角形,
,
························································································ 2分
且
··············································· 3分
,
即
························································ 4分
.··················································· 5分
證法二:
與
均為等邊三角形,
,
························································································ 2分
且
························································································ 3分
可由
繞著點
按順時針方向旋轉(zhuǎn)
得到··································· 4分
.··························································································· 5分
②
,
,
.········································································ 8分(每空1分)
(2)①
········································································································ 10分
②證法一:依題意,知
和
都是正
邊形的內(nèi)角,
,
,
![]()
,即
.····························· 11分
.·························································································· 12分
,
,
······ 13分
,![]()
········································ 14分
證法二:同上可證
.··························································· 12分
,如圖,延長
交
于
,
![]()
,
································ 13分
················· 14分
證法三:同上可證
.··························································· 12分
.![]()
![]()
,![]()
························································ 13分
即
········································································ 14分
證法四:同上可證
.··························································· 12分
![]()
.如圖,連接
,![]()
![]()
.···································· 13分
即
······························· 14分
注意:此題還有其它證法,可相應(yīng)評分.
98.(08四川資陽24題)24.(本小題滿分12分)
如圖10,已知點A的坐標(biāo)是(-1,0),點B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,連接AC、BC,過A、B、C三點作拋物線.
(1)求拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連結(jié)BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.
(08四川資陽24題解答)(1) ∵以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC= ∠COB=90°,
∴ΔAOC∽ ΔCOB,························································································ 1分
∴
.
又∵A(–1,0),B(9,0),
∴
,解得OC=3(負(fù)值舍去).
∴C(0,–3),
······················································································································ 3分
設(shè)拋物線解析式為y=a(x+1)(x–9),
∴–3=a(0+1)(0–9),解得a=
,
∴二次函數(shù)的解析式為y=
(x+1)(x–9),即y=
x2–
x–3.···························· 4分
(2) ∵AB為O′的直徑,且A(–1,0),B(9,0),
∴OO′=4,O′(4,0),····················································································· 5分
∵點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,
∴∠BCD=
∠BCE=
×90°=45°,
連結(jié)O′D交BC于點M,則∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=
AB=5.
∴D(4,–5).································································································· 6分
∴設(shè)直線BD的解析式為y=kx+b(k≠0)
∴
··························································· 7分
解得![]()
∴直線BD的解析式為y=x–9.····································· 8分
(3) 假設(shè)在拋物線上存在點P,使得∠PDB=∠CBD,
解法一:設(shè)射線DP交⊙O′于點Q,則
.
分兩種情況(如答案圖1所示):
①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).
∴把點C、D繞點O′逆時針旋轉(zhuǎn)90°,使點D與點B重合,則點C與點Q1重合,
因此,點Q1(7,–4)符合
,
∵D(4,–5),Q1(7,–4),
∴用待定系數(shù)法可求出直線DQ1解析式為y=
x–
.··································· 9分
解方程組
得![]()
![]()
∴點P1坐標(biāo)為(
,
),[坐標(biāo)為(
,
)不符合題意,舍去].
······················································································································ 10分
②∵Q1(7,–4),
∴點Q1關(guān)于x軸對稱的點的坐標(biāo)為Q2(7,4)也符合
.
∵D(4,–5),Q2(7,4).
∴用待定系數(shù)法可求出直線DQ2解析式為y=3x–17.······································ 11分
解方程組
得![]()
![]()
∴點P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].
······················································································································ 12分
∴符合條件的點P有兩個:P1(
,
),P2(14,25).
解法二:分兩種情況(如答案圖2所示):
①當(dāng)DP1∥CB時,能使∠PDB=∠CBD.
∵B(9,0),C(0,–3).
∴用待定系數(shù)法可求出直線BC解析式為y=
x–3.
又∵DP1∥CB,∴設(shè)直線DP1的解析式為y=
x+n.
把D(4,–5)代入可求n=
–
,
∴直線DP1解析式為y=
x–
.························· 9分
解方程組
得![]()
![]()
∴點P1坐標(biāo)為(
,
),[坐標(biāo)為(
,
)不符合題意,舍去].
······················································································································ 10分
②在線段O′B上取一點N,使BN=DM時,得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.
由①知,直線BC解析式為y=
x–3.
取x=4,得y= –
,∴M(4,–
),∴O′N=O′M=
,∴N(
,0),
又∵D(4,–5),
∴直線DN解析式為y=3x–17.······································································ 11分
解方程組
得![]()
![]()
∴點P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].
······················································································································ 12分
∴符合條件的點P有兩個:P1(
,
),P2(14,25).
解法三:分兩種情況(如答案圖3所示):
①求點P1坐標(biāo)同解法二.··············································································· 10分
②過C點作BD的平行線,交圓O′于G,
此時,∠GDB=∠GCB=∠CBD.
由(2)題知直線BD的解析式為y=x–9,
又∵ C(0,–3)
∴可求得CG的解析式為y=x–3,
設(shè)G(m,m–3),作GH⊥x軸交與x軸與H,
連結(jié)O′G,在Rt△O′GH中,利用勾股定理可得,m=7,
由D(4,–5)與G(7,4)可得,
DG的解析式為
,··········································································· 11分
解方程組
得![]()
![]()
∴點P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].························ 12分
∴符合條件的點P有兩個:P1(
,
),P2(14,25).
說明:本題解法較多,如有不同的正確解法,請按此步驟給分.
97.(08新疆自治區(qū)24題)(10分)某工廠要趕制一批抗震救災(zāi)用的大型活動板房.如圖,板房一面的形狀是由矩形和拋物線的一部分組成,矩形長為12m,拋物線拱高為5.6m.
(1)在如圖所示的平面直角坐標(biāo)系中,求拋物線的表達式.
(2)現(xiàn)需在拋物線AOB的區(qū)域內(nèi)安裝幾扇窗戶,窗戶的底邊在AB上,每扇窗戶寬1.5m,高1.6m,相鄰窗戶之間的間距均為0.8m,左右兩邊窗戶的窗角所在的點到拋物線的水平距離至少為0.8m.請計算最多可安裝幾扇這樣的窗戶?
![]()
(08新疆自治區(qū)24題解析)24.(10分)解:(1)設(shè)拋物線的表達式為
1分
點
在拋物線的圖象上.
∴![]()
······························································ 3分
∴拋物線的表達式為
············································································· 4分
(2)設(shè)窗戶上邊所在直線交拋物線于C、D兩點,D點坐標(biāo)為(k,t)
已知窗戶高1.6m,∴
··························································· 5分
![]()
(舍去)············································································ 6分
∴
(m)·············································································· 7分
又設(shè)最多可安裝n扇窗戶
∴
····················································································· 9分
.
答:最多可安裝4扇窗戶.···················································································· 10分
(本題不要求學(xué)生畫出4個表示窗戶的小矩形
96.(08四川自貢26題)拋物線
的頂點為M,與
軸的交點為A、B(點B在點A的右側(cè)),△ABM的三個內(nèi)角∠M、∠A、∠B所對的邊分別為m、a、b。若關(guān)于
的一元二次方程
有兩個相等的實數(shù)根。
(1)判斷△ABM的形狀,并說明理由。
(2)當(dāng)頂點M的坐標(biāo)為(-2,-1)時,求拋物線的解析式,并畫出該拋物線的大致圖形。
(3)若平行于
軸的直線與拋物線交于C、D兩點,以CD為直徑的圓恰好與
軸相切,求該圓的圓心坐標(biāo)。
(08四川自貢26題解析)解:(1)令![]()
得![]()
由勾股定理的逆定理和拋物線的對稱性知
△ABM是一個以
、
為直角邊的等腰直角三角形
(2)設(shè)![]()
∵△ABM是等腰直角三角形
∴斜邊上的中線等于斜邊的一半
又頂點M(-2,-1)
∴
,即AB=2
∴A(-3,0),B(-1,0)
將B(-1,0) 代入
中得![]()
∴拋物線的解析式為
,即![]()
圖略
(3)設(shè)平行于
軸的直線為![]()
解方程組錯誤!不能通過編輯域代碼創(chuàng)建對象。
得
,
(![]()
∴線段CD的長為![]()
∵以CD為直徑的圓與
軸相切
據(jù)題意得![]()
∴![]()
解得 ![]()
∴圓心坐標(biāo)為
和![]()
95.
(08四川巴中30題)(12分)30.已知:如圖14,拋物線
與
軸交于點
,點
,與直線
相交于點
,點
,直線
與
軸交于點
.
(1)寫出直線
的解析式.
(2)求
的面積.
(3)若點
在線段
上以每秒1個單位長度的速度從
向
運動(不與
重合),同時,點
在射線
上以每秒2個單位長度的速度從
向
運動.設(shè)運動時間為
秒,請寫出
的面積
與
的函數(shù)關(guān)系式,并求出點
運動多少時間時,
的面積最大,最大面積是多少?
(08四川巴中30題解析)解:(1)在
中,令![]()
![]()
,![]()
,
··············································· 1分
又
點
在
上
![]()
![]()
的解析式為
·············································································· 2分
(2)由
,得
···················································· 4分
,![]()
,
······························································································· 5分
························································································· 6分
(3)過點
作
于點![]()
![]()
![]()
······························································································· 7分
·········································································································· 8分
由直線
可得:![]()
在
中,
,
,則![]()
,
······················································································· 9分
![]()
···················································································· 10分
····························································································· 11分
此拋物線開口向下,
當(dāng)
時,![]()
當(dāng)點
運動2秒時,
的面積達到最大,最大為
.···························· 12分
94.(08山東濟寧26題)(12分)
![]()
中,
,
,
cm.長為1cm的線段
在
的邊
上沿
方向以1cm/s的速度向點
運動(運動前點
與點
重合).過
分別作
的垂線交直角邊于
兩點,線段
運動的時間為
s.
(1)若
的面積為
,寫出
與
的函數(shù)關(guān)系式(寫出自變量
的取值范圍);
(2)線段
運動過程中,四邊形
有可能成為矩形嗎?若有可能,求出此時
的值;若不可能,說明理由;
(3)
為何值時,以
為頂點的三角形與
相似?
(08山東濟寧26題解析)解:(1)當(dāng)點
在
上時,
,
.
.········································································ 2分
當(dāng)點
在
上時,
.
.·················································· 4分
(2)
,
.
.
.········································································ 6分
由條件知,若四邊形
為矩形,需
,即
,
.
當(dāng)
s時,四邊形
為矩形.································································· 8分
(3)由(2)知,當(dāng)
s時,四邊形
為矩形,此時
,
.··························································································· 9分
除此之外,當(dāng)
時,
,此時
.
,
.
.····························· 10分
,
.
又
,
.········································ 11分
,
.
當(dāng)
s或
s時,以
為頂點的三角形與
相似.··················· 12分
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com