欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  422275  422283  422289  422293  422299  422301  422305  422311  422313  422319  422325  422329  422331  422335  422341  422343  422349  422353  422355  422359  422361  422365  422367  422369  422370  422371  422373  422374  422375  422377  422379  422383  422385  422389  422391  422395  422401  422403  422409  422413  422415  422419  422425  422431  422433  422439  422443  422445  422451  422455  422461  422469  447090 

1.在實驗室中,通常將金屬鈉保存在

A.水中    B. 煤油中      C. 四氯化碳中   D.汽油中

試題詳情

102.(08廣東佛山25題)25.我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.

例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).

請你用上面的思想和方法對下面關(guān)于圓的問題進行研究:

(1) 如圖1,在圓O所在平面上,放置一條直線(和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些(直接寫出兩個即可)?

(2) 如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心兩條直線(與圓O分別交于點A、B與圓O分別交于點C、D).

請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之.

(3) 如圖3,其中AB是圓O的直徑,AC是弦,D的中點,弦DEAB于點F. 請找出點C和點E重合的條件,并說明理由.

 

(08廣東佛山25題解答)解:(1) 弦(圖中線段AB)、弧(圖中的ACB弧)、弓形、求弓形的面積(因為是封閉圖形)等.  (寫對一個給1分,寫對兩個給2分)

(2) 情形1  如圖21,AB為弦,CD為垂直于弦AB的直徑.  …………………………3分

結(jié)論:(垂徑定理的結(jié)論之一).  …………………………………………………………4分

證明:略(對照課本的證明過程給分).  …………………………………………………7分

情形2  如圖22,AB為弦,CD為弦,且ABCD在圓內(nèi)相交于點P.

結(jié)論:.

證明:略.

情形3 (圖略)AB為弦,CD為弦,且在圓外相交于點P.

結(jié)論:.

證明:略.

情形4  如圖23,AB為弦,CD為弦,且ABCD.

結(jié)論:  =   .

證明:略.

(上面四種情形中做一個即可,圖1分,結(jié)論1分,證明3分;

其它正確的情形參照給分;若提出的是錯誤的結(jié)論,則需證明結(jié)論是錯誤的)

(3) 若點C和點E重合,

則由圓的對稱性,知點C和點D關(guān)于直徑AB對稱. …………………………………8分

設(shè),則,.………………………………9分

D是   的中點,所以,

.………………………………………………………10分

解得.……………………………………………………………11分

(若求得等也可,評分可參照上面的標(biāo)準(zhǔn);也可以先直覺猜測點B、C是圓的十二等分點,然后說明)

 

試題詳情

101.(08山東聊城25題)25.(本題滿分12分)如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).

 

(1)要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?

(2)你感到折合而成的長方體盒子的側(cè)面積會不會有更大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由;

(3)如果把矩形硬紙板的四周分別剪去2個同樣大小的正方形和2個同樣形狀、同樣大小的矩形,然后折合成一個有蓋的長方體盒子,是否有側(cè)面積最大的情況;如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.

(08山東聊城25題解答)(本題滿分12分)

解:(1)設(shè)正方形的邊長為cm,則

.························································································ 1分

解得(不合題意,舍去),

剪去的正方形的邊長為1cm.·············································································· 3分

(注:通過觀察、驗證直接寫出正確結(jié)果給3分)

(2)有側(cè)面積最大的情況.

設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2,

的函數(shù)關(guān)系式為:

.······························································································· 5分

改寫為

當(dāng)時,

即當(dāng)剪去的正方形的邊長為2.25cm時,長方體盒子的側(cè)面積最大為40.5cm2.········ 7分

(3)有側(cè)面積最大的情況.

設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2

若按圖1所示的方法剪折,則的函數(shù)關(guān)系式為:

當(dāng)時,.····························· 9分

若按圖2所示的方法剪折,則的函數(shù)關(guān)系式為:

當(dāng)時,.················································································· 11分

比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長為cm時,折成的有蓋長方體盒子的側(cè)面積最大,最大面積為cm2

說明:解答題各小題只給了一種解答及評分說明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù).

試題詳情

100.(08廣東梅州23題)23.本題滿分11分.

如圖11所示,在梯形ABCD中,已知ABCD, ADDB,AD=DC=CBAB=4.以AB所在直線為軸,過D且垂直于AB的直線為軸建立平面直角坐標(biāo)系.

(1)求∠DAB的度數(shù)及A、DC三點的坐標(biāo);

(2)求過A、DC三點的拋物線的解析式及其對稱軸L

(3)若P是拋物線的對稱軸L上的點,那么使PDB為等腰三角形的點P有幾個?(不必求點P的坐標(biāo),只需說明理由)

(08廣東梅州23題解答)解: (1) DCABAD=DC=CB,

 ∠CDB=∠CBD=∠DBA,··············································································· 0.5分

   ∠DAB=∠CBA, DAB=2∠DBA, ············ 1分

DAB+∠DBA=90, DAB=60, ·········· 1.5分

  ∠DBA=30AB=4, DC=AD=2,  ········· 2分

RtAOD,OA=1,OD=,··························· 2.5分

A(-1,0),D(0, ),C(2, ).  · 4分

(2)根據(jù)拋物線和等腰梯形的對稱性知,滿足條件的拋物線必過點A(-1,0),B(3,0),

故可設(shè)所求為  = (+1)( -3) ······························································ 6分

將點D(0, )的坐標(biāo)代入上式得, =

所求拋物線的解析式為  =   ·········································· 7分

其對稱軸L為直線=1.······················································································ 8分

(3) PDB為等腰三角形,有以下三種情況:

①因直線LDB不平行,DB的垂直平分線與L僅有一個交點P1,P1D=P1B

P1DB為等腰三角形;  ················································································· 9分

②因為以D為圓心,DB為半徑的圓與直線L有兩個交點P2、P3DB=DP2,DB=DP3P2DB, P3DB為等腰三角形;

③與②同理,L上也有兩個點P4、P5,使得 BD=BP4,BD=BP5.  ···················· 10分

由于以上各點互不重合,所以在直線L上,使PDB為等腰三角形的點P有5個.

試題詳情

99.(08福建南平26題)26.(14分)

(1)如圖1,圖2,圖3,在中,分別以為邊,向外作正三角形,正四邊形,正五邊形,相交于點

①如圖1,求證:;

②探究:如圖1,     ;

如圖2,     ;

如圖3,    

(2)如圖4,已知:是以為邊向外所作正邊形的一組鄰邊;是以為邊向外所作正邊形的一組鄰邊.的延長相交于點

①猜想:如圖4,     (用含的式子表示);

②根據(jù)圖4證明你的猜想.

(08福建南平26題解答)(1)①證法一:均為等邊三角形,

,························································································ 2分

··············································· 3分

························································ 4分

.··················································· 5分

證法二:均為等邊三角形,

························································································ 2分

························································································ 3分

可由繞著點按順時針方向旋轉(zhuǎn)得到··································· 4分

.··························································································· 5分

,,.········································································ 8分(每空1分)

(2)①········································································································ 10分

②證法一:依題意,知都是正邊形的內(nèi)角,,

,即.····························· 11分

.·························································································· 12分

,······ 13分

,

········································ 14分

證法二:同上可證  .··························································· 12分

,如圖,延長

,

································ 13分

················· 14分

證法三:同上可證  .··························································· 12分

························································ 13分

········································································ 14分

證法四:同上可證  .··························································· 12分

.如圖,連接,

.···································· 13分

······························· 14分

注意:此題還有其它證法,可相應(yīng)評分.

試題詳情

98.(08四川資陽24題)24.(本小題滿分12分)

如圖10,已知點A的坐標(biāo)是(-1,0),點B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,連接AC、BC,過A、B、C三點作拋物線.

(1)求拋物線的解析式;

(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連結(jié)BD,求直線BD的解析式;

(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

(08四川資陽24題解答)(1) ∵以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,

∴∠OCA+∠OCB=90°,

又∵∠OCB+∠OBC=90°,

∴∠OCA=∠OBC,

又∵∠AOC= ∠COB=90°,

∴ΔAOC∽ ΔCOB,························································································ 1分

又∵A(–1,0),B(9,0),

,解得OC=3(負(fù)值舍去).

∴C(0,–3),

······················································································································ 3分

設(shè)拋物線解析式為y=a(x+1)(x–9),

∴–3=a(0+1)(0–9),解得a=

∴二次函數(shù)的解析式為y=(x+1)(x–9),即y=x2x–3.···························· 4分

(2) ∵AB為O′的直徑,且A(–1,0),B(9,0),

∴OO′=4,O′(4,0),····················································································· 5分

∵點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,

∴∠BCD=∠BCE=×90°=45°,

連結(jié)O′D交BC于點M,則∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5.

∴D(4,–5).································································································· 6分

∴設(shè)直線BD的解析式為y=kx+b(k≠0)

··························································· 7分

解得

∴直線BD的解析式為y=x–9.····································· 8分

(3) 假設(shè)在拋物線上存在點P,使得∠PDB=∠CBD,

解法一:設(shè)射線DP交⊙O′于點Q,則

分兩種情況(如答案圖1所示):

①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).

∴把點C、D繞點O′逆時針旋轉(zhuǎn)90°,使點D與點B重合,則點C與點Q1重合,

因此,點Q1(7,–4)符合,

∵D(4,–5),Q1(7,–4),

∴用待定系數(shù)法可求出直線DQ1解析式為y=x–.··································· 9分

解方程組

∴點P1坐標(biāo)為(,),[坐標(biāo)為(,)不符合題意,舍去].

······················································································································ 10分

②∵Q1(7,–4),

∴點Q1關(guān)于x軸對稱的點的坐標(biāo)為Q2(7,4)也符合

∵D(4,–5),Q2(7,4).

∴用待定系數(shù)法可求出直線DQ2解析式為y=3x–17.······································ 11分

解方程組

∴點P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].

······················································································································ 12分

∴符合條件的點P有兩個:P1(),P2(14,25).

解法二:分兩種情況(如答案圖2所示):

①當(dāng)DP1∥CB時,能使∠PDB=∠CBD.

∵B(9,0),C(0,–3).

∴用待定系數(shù)法可求出直線BC解析式為y=x–3.

又∵DP1∥CB,∴設(shè)直線DP1的解析式為y=x+n.

把D(4,–5)代入可求n= –,

∴直線DP1解析式為y=x–.························· 9分

解方程組

∴點P1坐標(biāo)為(),[坐標(biāo)為()不符合題意,舍去].

······················································································································ 10分

②在線段O′B上取一點N,使BN=DM時,得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.

由①知,直線BC解析式為y=x–3.

取x=4,得y= –,∴M(4,–),∴O′N=O′M=,∴N(,0),

又∵D(4,–5),

∴直線DN解析式為y=3x–17.······································································ 11分

解方程組

∴點P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].

······················································································································ 12分

∴符合條件的點P有兩個:P1(,),P2(14,25).

解法三:分兩種情況(如答案圖3所示):

①求點P1坐標(biāo)同解法二.··············································································· 10分

②過C點作BD的平行線,交圓O′于G,

此時,∠GDB=∠GCB=∠CBD.

由(2)題知直線BD的解析式為y=x–9,

又∵ C(0,–3)

∴可求得CG的解析式為y=x–3,

設(shè)G(m,m–3),作GH⊥x軸交與x軸與H,

連結(jié)O′G,在Rt△O′GH中,利用勾股定理可得,m=7,

由D(4,–5)與G(7,4)可得,

DG的解析式為,··········································································· 11分

解方程組

∴點P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].························ 12分

∴符合條件的點P有兩個:P1(,),P2(14,25).

說明:本題解法較多,如有不同的正確解法,請按此步驟給分.

試題詳情

97.(08新疆自治區(qū)24題)(10分)某工廠要趕制一批抗震救災(zāi)用的大型活動板房.如圖,板房一面的形狀是由矩形和拋物線的一部分組成,矩形長為12m,拋物線拱高為5.6m.

(1)在如圖所示的平面直角坐標(biāo)系中,求拋物線的表達式.

(2)現(xiàn)需在拋物線AOB的區(qū)域內(nèi)安裝幾扇窗戶,窗戶的底邊在AB上,每扇窗戶寬1.5m,高1.6m,相鄰窗戶之間的間距均為0.8m,左右兩邊窗戶的窗角所在的點到拋物線的水平距離至少為0.8m.請計算最多可安裝幾扇這樣的窗戶?

(08新疆自治區(qū)24題解析)24.(10分)解:(1)設(shè)拋物線的表達式為  1分

在拋物線的圖象上.

······························································ 3分

∴拋物線的表達式為············································································· 4分

(2)設(shè)窗戶上邊所在直線交拋物線于C、D兩點,D點坐標(biāo)為(kt)

已知窗戶高1.6m,∴··························································· 5分

(舍去)············································································ 6分

(m)·············································································· 7分

又設(shè)最多可安裝n扇窗戶

····················································································· 9分

答:最多可安裝4扇窗戶.···················································································· 10分

(本題不要求學(xué)生畫出4個表示窗戶的小矩形

試題詳情

96.(08四川自貢26題)拋物線的頂點為M,與軸的交點為A、B(點B在點A的右側(cè)),△ABM的三個內(nèi)角∠M、∠A、∠B所對的邊分別為m、a、b。若關(guān)于的一元二次方程有兩個相等的實數(shù)根。

(1)判斷△ABM的形狀,并說明理由。

(2)當(dāng)頂點M的坐標(biāo)為(-2,-1)時,求拋物線的解析式,并畫出該拋物線的大致圖形。

(3)若平行于軸的直線與拋物線交于C、D兩點,以CD為直徑的圓恰好與軸相切,求該圓的圓心坐標(biāo)。

(08四川自貢26題解析)解:(1)令

       得

     由勾股定理的逆定理和拋物線的對稱性知

△ABM是一個以為直角邊的等腰直角三角形

     (2)設(shè)

∵△ABM是等腰直角三角形

∴斜邊上的中線等于斜邊的一半

又頂點M(-2,-1)

,即AB=2

∴A(-3,0),B(-1,0)

將B(-1,0) 代入中得

∴拋物線的解析式為,即

圖略

(3)設(shè)平行于軸的直線為

解方程組錯誤!不能通過編輯域代碼創(chuàng)建對象。

  (

∴線段CD的長為

∵以CD為直徑的圓與軸相切

據(jù)題意得

解得

∴圓心坐標(biāo)為

試題詳情

95.(08四川巴中30題)(12分)30.已知:如圖14,拋物線軸交于點,點,與直線相交于點,點,直線軸交于點

(1)寫出直線的解析式.

(2)求的面積.

(3)若點在線段上以每秒1個單位長度的速度從運動(不與重合),同時,點在射線上以每秒2個單位長度的速度從運動.設(shè)運動時間為秒,請寫出的面積的函數(shù)關(guān)系式,并求出點運動多少時間時,的面積最大,最大面積是多少?

(08四川巴中30題解析)解:(1)在中,令

,

,··············································· 1分

的解析式為·············································································· 2分

(2)由,得  ···················································· 4分

,

,······························································································· 5分

························································································· 6分

(3)過點于點

······························································································· 7分

·········································································································· 8分

由直線可得:

中,,則

,······················································································· 9分

···················································································· 10分

····························································································· 11分

此拋物線開口向下,當(dāng)時,

當(dāng)點運動2秒時,的面積達到最大,最大為.···························· 12分

試題詳情

94.(08山東濟寧26題)(12分)

中,,cm.長為1cm的線段的邊上沿方向以1cm/s的速度向點運動(運動前點與點重合).過分別作的垂線交直角邊于兩點,線段運動的時間為s.

(1)若的面積為,寫出的函數(shù)關(guān)系式(寫出自變量的取值范圍);

(2)線段運動過程中,四邊形有可能成為矩形嗎?若有可能,求出此時的值;若不可能,說明理由;

(3)為何值時,以為頂點的三角形與相似?

(08山東濟寧26題解析)解:(1)當(dāng)點上時,,

.········································································ 2分

當(dāng)點上時,

.·················································· 4分

(2)

.········································································ 6分

由條件知,若四邊形為矩形,需,即,

當(dāng)s時,四邊形為矩形.································································· 8分

(3)由(2)知,當(dāng)s時,四邊形為矩形,此時

.··························································································· 9分

除此之外,當(dāng)時,,此時

,.····························· 10分

,

,.········································ 11分

,

當(dāng)s或s時,以為頂點的三角形與相似.··················· 12分

試題詳情


同步練習(xí)冊答案