欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  424315  424323  424329  424333  424339  424341  424345  424351  424353  424359  424365  424369  424371  424375  424381  424383  424389  424393  424395  424399  424401  424405  424407  424409  424410  424411  424413  424414  424415  424417  424419  424423  424425  424429  424431  424435  424441  424443  424449  424453  424455  424459  424465  424471  424473  424479  424483  424485  424491  424495  424501  424509  447090 

2.已知a、b為兩條不同的直線,α、β為兩個不同的平面,且aα,bβ,則下列命題中為假命題的是                            ( )

A.若ab,則αβ        B.若αβ,則ab

C.若a,b相交,則αβ相交   D.若α,β相交,則a,b相交

解析:若α,β相交,則ab既可以是相交直線也可以是異面直線.

答案:D

試題詳情

1.(2010·浙大附中模擬)已知某空間幾何體的主視圖、側(cè)視圖、俯視圖均為如圖所示的等腰直角三角形,如果直角三角形的直角邊長為1,那么這個幾何體的表面積為( )

A.    B.      C.         D.

解析:根據(jù)三視圖可以畫出該幾何體的直觀圖如圖所示,CD垂直于等腰直角三角形ABC所在平面,于是,易得SSABC+SACD+SCBD

=++++.

答案:D

試題詳情

21.(本小題滿分14分)已知m∈R,設Px1x2是方程x2ax-2=0的兩個根,不等式|m-5|≤|x1x2|對任意實數(shù)a∈[1,2]恒成立;Q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“PQ”為真命題的實數(shù)m的取值范圍.

解:由題設x1+x2a,x1x2=-2,

∴|x1x2|==.

a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

m<-1或m>4.

綜上,要使“PQ”為真命題,只需PQ真,即

        

解得實數(shù)m的取值范圍是(4,8].

試題詳情

20.(本小題滿分13分)設全集I=R已知集合M={x|(x+3)2≤0},N={x|2x2=()x6}

(1)求(∁IM)∩N

(2)記集合A=(∁IM)∩N,已知B={x|a-1≤x≤5-a,a∈R},若BAA.求實數(shù)a的取值范圍.

解:(1)∵M={x|(x+3)2≤0}={-3},

N={x|2x2=26x}={x|x2+x-6=0}={-3,2},

∴∁IM={x|x∈R且x≠-3},

∴(∁IM)∩N={2}.

(2)A=(∁IM)∩N={2},

ABA,∴BA,

B=∅或B={2}.

B=∅時,a-1>5-a,

a>3;

當B={2}時,.

綜上所述,所求a的取值范圍為{a|a≥3}.

試題詳情

19.(本題滿分12分)已知m,若  P是  q

的必要不充分條件,求實數(shù)m的取值范圍.

解:由題意得p:-2≤x≤10.

∵  p是  q的必要不充分條件,

qp的必要不充分條件,∴pq,qp,

∴實數(shù)m的取值范圍是{m|m≥9}.

試題詳情

18.(本小題滿分12分)已知集合M={x|x2x-6<0},N={x|0<xm<9},且MN,求 實數(shù)m的取值范圍.

解:M={x|x2x-6<0}={x|-2<x<3},

N={x|0<xm<9}={x|m<x<m+9},

MN,

所求m的取值范圍是[-6,-2].

試題詳情

17.(本小題滿分12分)寫出下列命題的否定,并判斷真假.

(1)∀x∈R,x2+x+1>0;

(2)∀x∈Q,x2+x+1是有理數(shù);

(3)∃α、β∈R,使sin(α+β)=sinα+sinβ;

(4)∃xy∈Z,使3x-2y≠10.

解:(1)的否定是“∃x∈R,x2+x+1≤0”.假命題.

(2)的否定是“∃x∈Q,x2+x+1不是有理數(shù)”.假命題.

(3)的否定是“∀α,β∈R,使sin(α+β)≠sinα+sinβ”.假命題.

(4)的否定是“∀x,y∈Z,使3x-2y=10”.假命題.

試題詳情

步驟)

16.(本小題滿分12分)設集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.

AB={2},求實數(shù)a的值.

解:由x2-3x+2=0,得x=1或x=2,

故集合A={1,2}.

AB={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=-1或a=-3;

a=-1時,B={x|x2-4=0}={-2,2},滿足條件;

a=-3時,B={x|x2-4x+4=0}={2},滿足條件;

綜上,知a的值為-1或-3.

試題詳情

15.在下列四個結(jié)論中,正確的有  .(填序號)

①若AB的必要不充分條件,則非B也是非A的必要不充分條件

②“”是“一元二次不等式的解集為R”的充要條件

③“x≠1”是“x2≠1”的充分不必要條件

④“x≠0”是“x+|x|>0”的必要不充分條件

解析:∵原命題與其逆否命題等價,

∴若AB的必要不充分條件,則非B也是非A的必要不充分條件.

x≠1x2≠1,反例:x=-1⇒x2=1,

∴“x≠1”是“x2≠1”的不充分條件.

x≠0x+|x|>0,反例x=-2⇒x+|x|=0.

x+|x|>0⇒x>0⇒x≠0,

∴“x≠0”是“x+|x|>0”的必要不充分條件.

答案:①②④

試題詳情

14.某班有36名同學參加數(shù)學、物理、化學課外探究小組,每名同學至多參加兩個小

組,已知參加數(shù)學、物理、化學小組的人數(shù)分別為26,15,13,同時參加數(shù)學和物理小組的有6人,同時參加物理和化學小組的有4人,則同時參加數(shù)學

和化學小組的有  人.

解析:如圖,設同時參加數(shù)學和化學小組的有x人,則26+15+13-6-4-x=36,解得x=8.                          

答案:8

試題詳情


同步練習冊答案